课件22张PPT。2.4.1 抛物线及其标准方程2.4 抛物线 本节课主要学习抛物线的定义与方程. 通过动画展示生活中的抛物线,培养学生善于观察,热爱生活的良好品质,同时激发了学生探索新知的欲望,充分调动学生学习的积极性和主动性.
运用类比的思想,类比椭圆和双曲线标准方程的建立,学习抛物线的方程.例1和例2是探讨抛物线的焦点坐标及标准方程的求法。例2是求通风塔的形状双曲线方程, 帮助学生理解。
http://www.jtyhjy.com/edu/ppt/ppt_playVideo.action?mediaVo.resId=541bd6b65aa8dafbc5fb17d7演示现实中抛物线的形成抛物线的生活实例飞机投弹生活中存在着各种形式的抛物线 如图,点F是定点,L是不经过点F的定直线。H是L上任意一点,过点H作MH⊥L,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M 的轨迹,你能发现点M满足的几何条件吗?抛物线的定义几何画板演示抛物线的标准方程http://www.jtyhjy.com/edu/ppt/ppt_playVideo.action?mediaVo.resId=541bd6b25aa8dafbc5fb17d3动画演示抛物线的标准方程在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.点F叫抛物线的焦点,
直线l 叫抛物线的准线.|MF|=dd 为 M 到 l 的距离准线焦点d抛物线的定义:那么如何建立坐标系,使抛物线的方程更简单,
其标准方程形式怎样?即:若| MF |=d,则点M的轨迹是抛物线。.FM.抛物线的标准方程解:设|FK|=p(p>0),M(x,y)由抛物线定义知:|MF|=d 把方程 y2 = 2px(p>0) 叫做抛物线的标准方程而p 的几何意义是: 焦点到准线的距离 在学习椭圆和双曲线的时候,由于在坐标平面内的焦点位置不同,导致方程不同。同样抛物线焦点位置不同,方程也会有所不同。总结:y2=-2px
(p>0)x2=2py
(p>0)y2=2px
(p>0)P的意义:抛物线的焦点到准线的距离方程的特点:
(1)左边是二次式,
(2)右边是一次式.四种抛物线的对比思考:如何通过方程确定抛物线的焦点位置和开口方向?例1 已知抛物线的标准方程是y2 = 6x,
求它的焦点坐标和准线方程;典例展示(5,0)x= -5(0,-2)y=2当a>0时与当a<0时,结论都为:思考:例2.已知抛物线的焦点是F(0,-2),求它的标准方程。1.抛物线 上一点M到焦点距离是 ,则点M到准线的距离是_______,点M的横坐标是______________;
2.抛物线 上与焦点的距离等于9的点的坐标是_________________.变式训练例3:一种卫星接收天线如下图所示。卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处。已知接收天线的径口(直径)为4.8m,深度为0.5m。建立适当的坐标系,求抛物线的标准方程和焦点坐标。解:如图,在接收天线的轴截面所在平面内建立直角坐标系,使接收天线的顶点(即抛物线的顶点)与原点重合。
根据下列条件写出抛物线的标准方程:
(1)焦点是F(3,0)
(2)准线方程是
(3)焦点到准线的距离是2.3.抛物线的标准方程类型与图象特征的对应关系及判断方法2.抛物线的四种标准方程与其焦点、准线方程4.注重数形结合的思想 1.抛物线的定义5.注重分类讨论的思想课件25张PPT。2.4.2 抛物线的简单几何性质(2)2.4 抛物线 利用探照灯、汽车前灯的反光曲面等生活中的实物进行新课导入。在前一节课学习抛物线的基础上,继续学习抛物线的通径和焦半径,直线与抛物线的位置关系等等. 激发学生的数学应用意识.
运用类比的思想,类比椭圆、双曲线的性质学习抛物线的通径和焦半径,直线与抛物线的位置关系.例1是关于抛物线的证明问题;例2是探寻直线与抛物线的交点个数问题,运用根的判别式法;例3运用了设而不求和点差法。
y2 = 2px
(p>0)y2 = -2px
(p>0)x2 = 2py
(p>0)x2 = -2py
(p>0)关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称(0,0)e=1探照灯、汽车前灯的反光曲面,手电筒的反光镜面、太阳灶的镜面都是抛物镜面。抛物镜面:抛物线绕其对称轴旋转而成的曲面。灯泡放在抛物线的焦点位置上,通过镜面反射就变成了平行光束,这就是探照灯、汽车前灯、手电筒的设计原理。平行光线射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳灶能把光能转化为热能的理论依据。抛物线的通径和焦半径1.通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2FP通径的长度:2PP越大,开口越开阔2.连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。焦半径公式:下面请大家推导出其余三种标准方程抛物线的焦半径公式。3.相交(一个交点,两个交点). 直线与抛物线的位置关系问题1:直线与抛物线有怎样的位置关系?1.相离;2.相切;与双曲线的情况一致把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的
对称轴平行(重合)相交(一个交点) 计 算 判 别 式问题2:如何判断直线与抛物线的位置关系?通过焦点的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的焦点弦。FA 焦点弦焦点弦公式: 下面请大家推导出其余三种标准方程抛物线的焦点弦公式。By2 = 2px
(p>0)y2 = -2px
(p>0)x2 = 2py
(p>0)x2 = -2py
(p>0)关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称(0,0)(0,0)(0,0)(0,0)xyOABDFl典例展示例1、过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。关于过焦点弦还有一条性质,请大家思考:xyOFABDy2=4x 分析:用解析法解决这个问题,只要讨论直线l的方程与抛物线的方程组成的方程组的解的情况,由方程组解的情况判断直线l与抛物线的位置关系.?解:由题意,设直线l 的方程为y-1=k(x+2).(1)当k=0时,由方程①得y=1
综上,我们可得:当焦点在x(y)轴上,开口方向不定时,设为y2=mx(m ≠0)(x2=my (m≠0)),可避免讨论 例3.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,求这个正三角形的边长. 本题利用了抛物线与正三角形有公共对称轴这一性质,但往往会直观上承认而忽略了它的证明.?A2.过抛物线y2=8x的焦点,作倾斜角为45°的直线,
则被抛物线截得的弦长为( )
A.8 B.16
C.32 D.61BC 直线与抛物线的位置关系
⑴直线与抛物线有三种位置关系:相交、相切、相离.
相交:直线与抛物线交于两个不同点,或直线与抛物线
的对称轴平行(重合);
相切:直线与抛物线有且只有一个公共点,且直线与抛物线
的对称轴不平行(重合);
相离:直线与抛物线无公共点.⑵直线与抛物线的位置关系的判断. 把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的
对称轴平行(重合)相交(一个交点) 计 算 判 别 式课件24张PPT。2.4 抛物线2.4.2 抛物线的简单几何性质(1) 通过动画展示抛物线的形成,利用图片直观感知抛物线在我们日常生活中的存在,培养学生善于观察的良好品质,同时激发了学生探索新知的欲望,充分调动学生学习的积极性和主动性.运用类比的思想,类比椭圆的性质和双曲线的性质学习抛物线的性质.
例1是利用抛物线的几何性质求双曲线的标准方程;例2是求直线与抛物线相交的弦长问题,利用抛物线的定义和数形结合的方法帮助学生理解。利用动画展示抛物线的对称性.复习类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质? 抛物线有许多重要性质.我们根据抛物线的标准方程研究它的一些简单几何性质: 抛物线的简单几何性质1.范围 因为p>0,由方程(1)可知,对于抛物线(1)上的点M (x,y),x≥0,所以这条抛物线在y轴的右侧,开口方向与x轴正向相同;
当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.2.对称性 以-y代y,方程(1)不变,所以这条抛物线关于x轴对称. 我们把抛物线的对称轴叫做抛物线的轴.3.顶点 抛物线和它的轴的交点叫做抛物线的顶点.在方程(1)中,当y=0时,x=0,因此抛物线(1)的顶点就是坐标原点.4.离心率 抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.FABy2=2px2p 过焦点而垂直于对称轴的
弦AB,称为抛物线的通径. 利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图.|AB|=2p2p越大,抛物线张口越大.5.通径 抛物线的其它几何性质 连接抛物线上任意一点与焦点的线段叫做抛物线的焦半径.焦半径公式:F6.焦半径y2 = 2px
(p>0)y2 = -2px
(p>0)x2 = 2py
(p>0)x2 = -2py
(p>0)关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称(0,0)e=1抛物线的几何性质(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;
(2)抛物线只有一条对称轴,没有对称中心;
(3)抛物线只有一个顶点,一个焦点,一条准线;
(4)抛物线的离心率e是确定的,为1;
(5)抛物线的通径为2p, 2p越大,抛物线的张口越大.解:因为抛物线关于x轴对称,它的顶点在坐标原
点,并且经过点M(2, ),所以,可设它的标
准方程为因为点M在抛物线上,所以因此,所求抛物线的标准方程是?即p =2. 抛物线几何性质的应用分析:由抛物线的方程可以得到它的焦点坐标,又直线l的斜率为1,所以可以求出直线l的方程;与抛物线的方程联立,可以求出A,B两点的坐标;利用两点间的距离公式可以求出∣AB|.这种方法虽然思路简单,但是需要复杂的代数运算.典例展示下面,我们介绍另外一种方法——数形结合的方法.还可以如何求x1+x2?分析:运用抛物线的定义和平面几何知识来证比较简捷.如上题,求证:以AB为直径的圆和抛物线的准线相切.所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.证明:如图,设AB的中点为E,过A,E,B分别向准线l引垂线AD,EH,BC,垂足分别为D,H,C,则|AF|=|AD|,|BF|=|BC|∴|AB|=|AF|+|BF|
=|AD|+|BC|
=2|EH| 2.抛物线 的弦AB垂直x轴,若|AB|= ,
则焦点到AB的距离为 。 21.做一做(请把正确的答案写在横线上)
(1)顶点在原点,对称轴为y轴且过(4,1)的抛物线方程是 .
(2)已知点(-2,3)与抛物线y2=2px(p>0)的焦点的距离是5,则p= .
(3)抛物线y=2px2(p>0)的对称轴为 .x2=16y4y轴抛物线只位于半个坐标平面内,虽然它也
可以无限延伸,但没有渐近线;抛物线只有一条对称轴,没有对称中心;抛物线的离心率是确定的,等于1.抛物线只有一个顶点,一个焦点,一条准线;1. 范围:2. 对称性:3. 顶点:4. 离心率: