西藏山南市普通高中2023~2024学年第一学期期末考试
7.已知椭圆C荐+若=1o>6>0)的离心率为1,双曲线C若-若=1的离心率为,则
A.e2 =2e
B.e1+e1=2
C.e=e+1
D.ej+e=2
高二数学
8.在四棱锥C-OADB中,底面OADB为平行四边形,E为AC的中点,F为BD的中
全卷满分150分,考试时间120分钟。
点,OA=a,Oi=b,OC=c,则EF
注意事项:
A.b-zc
B.a-b-zc
1.答题前,先将自己的姓名、准考证号填写在试卷和答題卡上,并将条形码粘贴在答题卡上的指定
位置。
C.a-jb-c
D.za+2b-c
2.请按题号顺序在答题卡上各题目的答题区战内作答,写在试卷、草稿纸和答题卡上的非答题区城
9.抛掷一枚硬币出现正面或反面,记事件A表示“出现正面”,事件B表示“出现反面”,则
均无效。
A.A与B相互独立
B.P(AB)=P(A)·P(B)
3.选择題用2B铅笔在答題卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答題卡上作答;字
体工整,笔迹清楚。
C.A与B不相互独立
D.P(AB)-
4.考试结束后,请将试卷和答题卡一并上交。
5.本卷主要考查内容:必修第二册第七章、第九章、第十章,选择性必修第一册。
10.已知点A(一1,1),B(3,5),若点A,B到直线1的距离都为2,则直线1的方程不可能为
A.x-y+2-22=0
B.x-y+2+22=0
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的
C.y=3
D.x-y-1=0
1.已知复数1=2-i,2=1十i,则12=
11.已知抛物线C:y2=2px(p>0),O为坐标原点,点P为抛物线上的一点,且点P在x轴的上方,若线
A.-1+i
B.1-2i
C.2+i
D.3+i
段OP的垂直平分线过点Q(2p,0),则直线OP的斜率为
2.抛物线y=6x2的准线方程为
A.1
B.2
1
c
p
A.y=一立
B.y=-
24
C.y=-6
D.y=-3
12.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA
3.已知椭圆+兰=1的左顶点为A,上顶点为B,则1AB1=
=BC,E为CD的中点,F为PC的中点,则异面直线BF与PE所成角的正
A.22
B.3
C.4
D.√6
弦值为
4.无论m为何值,直线y=mx十2m十1所过定点的坐标为
A.⑦8
A.(-2,-1)
B.(2,-1)
C.(-2,1)
D.(2,1)
9
5.已知双曲线号。千-1(>0)的虚轴长是实轴长的3倍,则实数a的值为
y2
C.5/3
D4⑤
9
9
A
R
c号
D合
二、填空题:本大题共4小题,每小题5分,共20分
6.小张某一周的总开支分布如图①所示,该星期的食品开支如图②所示,则以下说法正确的是
13.已知直线x一my十2=0被圆x2+y2=1所截得的弦长为√2,则实数m=
中开元
120
14.某校高一年级共有300名同学参加法制知识竞赛,已知所有学生成绩的第70百分位数是75分,则成
100
绩大于或等于75分的学生至少有名.
15.已知平面a的一个法向量为n=(2,3,5),点A(1,2,4)是平面g上的一点,则点P(一1,1,5)到平面a
H
信
0
的距离为
10g
马蛋←站以茨蔬来t刊食,M冰论
A.储蓄比通信开支多50元
B.日常开支比食品中的其他开支少150元
16.已知椭圆C:千+y=1的左右焦点分别为R,F,点P为椭圆上一点,且点P位于第一象限,PR上PR,
C.娱乐支出为100元
D.肉类开支占总开支的?
则|PFI=
,|PF2|=
·(本题第一空2分,第二空3分)
【高二数学第1页(共4页)】
24364B
【高二数学第2页(共4页)】
24364B西藏山南市普通高中2023~2024学年第-学期期末考试·高二数学
参考答案、提示及评分细则
1.D因为1=2-i,=1十i,
所以212=(2-i)(1十i)=2+2i-i十1=3十i.故选D.
2.B抛物线的标准方程为=名,可得2=名p=立·放抛物线的准线方程为y=一
3.D由A(2,0),B(0,W2),可得|AB引=√6.
4.C当x=一2时,y=1,可知直线过定点(一2,1).
5.A由题意有Va中=36,解得a=合
6.C由食品开支图,可知食品开支有30+40+100+80+50=300(元),所以一星期的总开支300÷30%=
1000(元),其中娱乐支出为1000×10%=100(元),故C正确:
储蓄比通信开支多1000×(30%一5%)=250(元),故A错误:
日常开支为1000×20%=200(元),故日常开支比食品中的其他开支多150元,故B错误;
肉类开支占总开支的10÷100=0:故D错误.故选C
1.D由=“。-1-g后==1+g可得+=2
a
8.A连0E,0F,求-O亦-0成=0成+B萨-2Oi+Oò=0成+2Oi-号Oi+0心)=0成-2O心=b
1
2c.
9.C由题意得P(A)= ,P(B)=号,P(AB)=0,故A与B,A与B均不相互独立,A,B,D不正确故选C
10,D直线AB的斜率为已=1.①直线1与直线AB平行时,设直线1的方程为x-y十m=0,有
m一2-2,解得m=2士2W2;@若直线1过AB的中点(1,3)时,若直线1的斜率存在,设直线1的方程为y
√2
一3=k(x-1),整理为kx一y十3-k=0,有2一2=2,解得k=0,有y=3:若直线1的斜率不存在,x=3
√k十
符合题意
山.A设点P的坐标为(6m),有OP的中点为T(p受),直线TQ的斜率
一=2m
4p-2pm-8,直线
2
0P的斜率为是-是有,n8p×兰-1,解得m=20,故直线0P的斜率为
2p
12.A由AP,AB,AD两两垂直,建立如图所示的空间直角坐标系,设AB=
2,点B(2,0,0),D(0,2,0),C(2,2,0),P(0,0,2),F(1,1,1),E(1,2,0),可
得BF=(一1,1,1),PE=(1,2,一2),设异面直线BF与PE所成的角为
0,有cos0=
1-
5x3-9,sin0=V1-27=9
13.士7由直线被圆截得的弦长为厄,可得圆心到直线的距离为
,有
A
后行号解得加一士7
14.90200-200×70%=90.
15,A=(-2,-11)点P(-115)到平面的距离d=n的-墨
n
19
【高二数学参考答案第1页(共3页)】
24364B