江苏省南京市第二十九中学高二下学期5月份数学试题(含解析)

文档属性

名称 江苏省南京市第二十九中学高二下学期5月份数学试题(含解析)
格式 docx
文件大小 822.8KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-05-28 11:25:56

图片预览

文档简介

江苏省南京市第二十九中学高二下学期5月份数学试题
注意事项:
1.本试卷满分150分,考试时间120分钟。
2.答题前,考生务必将姓名、考生号等个人信息填写在答题卡指定位置。
3.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知等差数列的公差为,集合,若,则( )
A.-1 B. C.0 D.
2.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种 B.种
C.种 D.种
3.函数存在3个零点,则的取值范围是( )
A. B. C. D.
4.设函数,在上的导函数存在,且,则当时( )
A. B.
C. D.
5.某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A.0.8 B.0.6 C.0.5 D.0.4
6.某物理量的测量结果服从正态分布,下列结论中不正确的是( )
A.越小,该物理量在一次测量中在的概率越大
B.该物理量在一次测量中大于10的概率为0.5
C.该物理量在一次测量中小于9.99与大于10.01的概率相等
D.该物理量在一次测量中落在与落在的概率相等
7.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )
A. B. C. D.
8.某兴趣小组研究光照时长x(h)和向日葵种子发芽数量y(颗)之间的关系,采集5组数据,作如图所示的散点图.若去掉后,下列说法正确的是( )
A.相关系数r变小 B.决定系数变小
C.残差平方和变大 D.解释变量x与预报变量y的相关性变强
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知数列满足,则下列结论正确的有(  )
A.为等比数列
B.的通项公式为
C.为递增数列
D.的前n项和
10.某企业使用新技术对某款芯片制造工艺进行改进.部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记表示事件“某芯片通过智能检测系统筛选”,表示事件“某芯片经人工抽检后合格”.改进生产工艺后,该款芯片的某项质量指标服从正态分布,现从中随机抽取个,这个芯片中恰有个的质量指标位于区间,则下列说法正确的是( )(若,)
A.
B.
C.
D.取得最大值时,的估计值为53
11.现安排甲 乙 丙 丁 戊5名同学参加暑期志愿者服务活动,有翻译 导购员 收银员 仓库管理员四项工作可供选择,每人至多从事一项工作,下列说法正确的是( )
A.若5人每人可任选一项工作,则有种不同的选法
B.若安排甲和乙分别从事翻译 收银工作,其余3人中任选2人分别从事导购 仓库管理工作,则有12种不同的方案
C.若仓库管理工作必须安排2人,其余工作各安排1人,则有60种不同的方案
D.若每项工作至少安排1人,每人均需参加一项工作,其中甲 乙不能从事翻译工作,则有126种不同的方案
三、填空题:本题共3小题,每小题5分,共15分.
12.的展开式中的系数为 (用数字作答).
13.记为等差数列的前n项和.若,则 .
14.若曲线有两条过坐标原点的切线,则a的取值范围是 .
四、解答题:本题共5小题,第15小题13分,第16、17小题15分,第18、19小题17分,共77分.解答应写出文字说明、证明过程或演算步骤.
15.在的展开式中,
(1)求二项式系数最大的项;
(2)若第项是有理项,求的取值集合.
(3)系数的绝对值最大的项是第几项;
16.记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
17.已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
18.基本不等式可以推广到一般的情形:对于个正数,它们的算术平均不小于它们的几何平均,即,当且仅当时,等号成立.若无穷正项数列同时满足下列两个性质:①;②为单调数列,则称数列具有性质.
(1)若,求数列的最小项;
(2)若,记,判断数列是否具有性质,并说明理由;
(3)若,求证:数列具有性质.
19.某市共有教师1000名,为了解老师们的寒假研修学习情况,评选研修先进个人,现随机抽取了10名教师利用“学习APP”学习的时长数据(单位:小时):35,43,90,83,50,45,82,75,62,35.学习时长不低于80小时的教师评为“研修先进个人”.
(1)现从该样本中随机抽取3名教师的学习时长,求这3名教师中恰有1名教师是研修先进个人的概率.
(2)若该市所有教师的学习时长近似地服从正态分布,其中,为抽取的10名教师学习时长的样本平均数,利用所得正态分布模型解决以下问题:
①试估计学习时长不低于50小时的教师的人数(结果四舍五入到整数);
②若从该市随机抽取的n名教师中恰有ξ名教师的学习时长在内,则当的均值不小于32时,n的最小值为多少?
附:若随机变量服从正态分布 ,则,,.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.B
【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.
【详解】依题意,等差数列中,,
显然函数的周期为3,而,即最多3个不同取值,又,
则在中,或,
于是有,即有,解得,
所以,.
故选:B
2.D
【分析】利用分层抽样的原理和组合公式即可得到答案.
【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,
根据组合公式和分步计数原理则不同的抽样结果共有种.
故选:D.
3.B
【分析】写出,并求出极值点,转化为极大值大于0且极小值小于0即可.
【详解】,则,
若要存在3个零点,则要存在极大值和极小值,则,
令,解得或,
且当时,,
当,,
故的极大值为,极小值为,
若要存在3个零点,则,即,解得,
故选:B.
4.C
【分析】对于AB,利用特殊函数法,举反例即可排除;对于CD,构造函数,利用导数与函数单调性的关系证得在上单调递减,从而得以判断.
【详解】对于AB,不妨设,,则,,满足题意,
若,则,故A错误,
若,则,故B错误;
对于CD,因为,在上的导函数存在,且,
令,则,
所以在上单调递减,
因为,即,所以,
由得,则,故C正确;
由得,则,故D错误.
故选:C.
5.A
【分析】先算出同时爱好两项的概率,利用条件概率的知识求解.
【详解】同时爱好两项的概率为,
记“该同学爱好滑雪”为事件,记“该同学爱好滑冰”为事件,
则,
所以.
故选:.
6.D
【分析】由正态分布密度曲线的特征逐项判断即可得解.
【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;
对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;
对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;
对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.
故选:D.
7.D
【分析】根据,再利用数列与的关系判断中各项的大小,即可求解.
【详解】[方法一]:常规解法
因为,
所以,,得到,
同理,可得,
又因为,
故,;
以此类推,可得,,故A错误;
,故B错误;
,得,故C错误;
,得,故D正确.
[方法二]:特值法
不妨设则
故D正确.
8.D
【分析】从图中分析得到去掉后,回归效果更好,再由相关系数,决定系数,残差平方和和相关性的概念和性质作出判断即可.
【详解】从图中可以看出较其他点,偏离直线远,故去掉后,回归效果更好,
对于A,相关系数越接近于1,模型的拟合效果越好,若去掉后,相关系数r变大,故A错误;
对于B,决定系数越接近于1,模型的拟合效果越好,若去掉后,决定系数变大,故B错误;
对于C,残差平方和越小,模型的拟合效果越好,若去掉后,残差平方和变小,故C错误;
对于D,若去掉后,解释变量x与预报变量y的相关性变强,且是正相关,故D正确.
故选:D.
9.ABD
【分析】根据已知证明为定值即可判断A;由A选项结合等比数列的通项即可判断B;作差判断的符号即可判断C;利用分组求和法即可判断D.
【详解】因为,
所以+3,所以,
又因为,
所以数列是以4为首项,2为公比的等比数列,故A正确;
,即,故B正确;
因为,
因为,所以,
所以,所以为递减数列,故C错误;

则,故D正确.
故选:ABD.
10.ACD
【分析】直接利用题意判断A;利用条件概率、全概率公式等进行转化判断B;利用正态分布的性质判断C;设,由函数的单调性判断D.
【详解】对于A,由题意,故A正确;
对于B,由,则,
又,
于是,即,
因此,即,则,故B错误;
对于C,
,故C正确;
对于D,,
设,

解得,,
由,
解得,即,
所以取得最大值时,的估计值为53,故D正确.
故选:ACD.
11.ACD
【分析】由独立事件的乘法公式可得A正确;由元素有限制的排列和组合可得B错误;C正确;D正确.
【详解】A:若5人每人可任选一项工作,每人有4种选法,共有种,故A正确;
B:若安排甲和乙分别从事翻译 收银工作,其余3人中任选2人分别从事导购 仓库管理工作,则共有种,故B错误;
C:若仓库管理工作必须安排2人,其余工作各安排1人,则有种,故C正确;
D:若每项工作至少安排1人,每人均需参加一项工作,其中甲 乙不能从事翻译工作,分两种情况:
从余下三名同学中选一人从事翻译工作,此时有种;
从余下三名同学中选两人从事翻译工作,此时有种;
所以共有种,故D正确;
故选:ACD.
12.-28
【分析】可化为,结合二项式展开式的通项公式求解.
【详解】因为,
所以的展开式中含的项为,
的展开式中的系数为-28
故答案为:-28
13.
【分析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.
【详解】是等差数列,且,
设等差数列的公差
根据等差数列通项公式:
可得
即:
整理可得:
解得:
根据等差数列前项和公式:
可得:
.
故答案为:.
【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.
14.
【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.
【详解】∵,∴,
设切点为,则,切线斜率,
切线方程为:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
故答案为:
15.(1)
(2)
(3)第项和第项
【分析】(1)利用二项式定理求出通项,二项式系数最大的项为中间项,求解即可;
(2)当为整数时为有理项,即可求解;
(3)设第项的系数的绝对值最大,列方程组即可求解.
【详解】(1),,
二项式系数最大的项为中间项,即第项,
所以;
(2),,
当为整数时为有理项,即,
则的取值集合为;
(3)设第项的系数的绝对值最大,
则,所以,解得,
故系数的绝对值最大的项为第项和第项.
16.(1)
(2)见解析
【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;
(2)由(1)的结论,利用裂项求和法得到,进而证得.
【详解】(1)∵,∴,∴,
又∵是公差为的等差数列,
∴,∴,
∴当时,,
∴,
整理得:,
即,


显然对于也成立,
∴的通项公式;
(2)

17.(1)
(2)
【分析】(1)先算出切点,再求导算出斜率即可
(2)求导,对分类讨论,对分两部分研究
【详解】(1)的定义域为
当时,,所以切点为,所以切线斜率为2
所以曲线在点处的切线方程为
(2)

若,当,即
所以在上单调递增,
故在上没有零点,不合题意
若,当,则
所以在上单调递增所以,即
所以在上单调递增,
故在上没有零点,不合题意

(1)当,则,所以在上单调递增
所以存在,使得,即
当单调递减
当单调递增
所以
当,
令则
所以在上单调递增,在上单调递减,所以,
又,,
所以在上有唯一零点
又没有零点,即在上有唯一零点
(2)当

所以在单调递增
所以存在,使得
当单调递减
当单调递增,

所以存在,使得,即
当单调递增,当单调递减,
当,,
又,
而,所以当
所以在上有唯一零点,上无零点
即在上有唯一零点
所以,符合题意
所以若在区间各恰有一个零点,求的取值范围为
【点睛】
方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.
18.(1)最小项为
(2)数列具有性质,理由见解析.
(3)证明见解析
【分析】(1)利用,结合三个数的算术平均不小于它们的几何平均求解;
(2)变形,再利用等比数列求和证明性质①,利用证明②;
(3)结合二项式定理及n元基本不等式求解.
【详解】(1),当且仅当,即时,等号成立,
数列的最小项为.
(2)数列具有性质.


数列满足条件①.
为单调递增数列,数列满足条件②.
综上,数列具有性质.
(3)先证数列满足条件①:

当时,
则,
数列满足条件①.
再证数列满足条件②:
(,等号取不到)
为单调递增数列,数列满足条件②.
综上,数列具有性质.
【点睛】关键点点睛:本题考查等比数列求和及二项式定理,证明性质①均需要放缩为可求和数列.
19.(1)
(2)① ②
【分析】(1)直接使用古典概型和排列组合工具求解;
(2)①直接使用正态分布数据计算出的概率,然后用概率估计实际的比例;②用正态分布数据求出的均值,再解出的最小值.
【详解】(1)由于这10名教师中恰有3名是研修先进个人,故随机抽取的3名教师中恰有1名教师是研修先进个人的概率.
(2)①直接计算可得.
所以.
故可以估计学习时长不低于50小时的教师的人数为.
②由于,故.
当时,有,得.
所以的最小值是.
答案第1页,共2页
答案第1页,共2页
同课章节目录