5.5 分式方程的应用题分层练习(原卷版+解析版)

文档属性

名称 5.5 分式方程的应用题分层练习(原卷版+解析版)
格式 zip
文件大小 645.2KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2024-05-31 17:35:40

文档简介

中小学教育资源及组卷应用平台
5.5分式方程的应用题 分层练习
考查题型一、商品购买类(考查次数最多)
1.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
(1)A,B两种型号充电桩的单价各是多少?
(2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
【分析】(1)根据“用万元购买A型充电桩与用万元购买B型充电桩的数量相等”列分式方程求解;
(2)根据“购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的”列不等式组确定取值范围,从而分析计算求解
【详解】(1)解:设B型充电桩的单价为万元,则A型充电桩的单价为万元,由题意可得:
,
解得,
经检验:是原分式方程的解,

答:A型充电桩的单价为万元,B型充电桩的单价为万元;
(2)解:设购买A型充电桩个,则购买B型充电桩个,由题意可得:
,解得,
∵须为非负整数,
∴可取,,,
∴共有三种方案:
方案一:购买A型充电桩个,购买B型充电桩个,购买费用为(万元);
方案二:购买A型充电桩个,购买B型充电桩个,购买费用为(万元);
方案三:购买A型充电桩个,购买B型充电桩个,购买费用为(万元),

∴方案三总费用最少.
2.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.
(1)甲、乙两种粽子每个的进价分别是多少元?
(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为w元.
①求w与m的函数关系式,并求出m的取值范围;
②超市应如何进货才能获得最大利润,最大利润是多少元?
【分析】(1)设甲粽子每个的进价为x元,则乙粽子每个的进价为元,根据“用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同”列出分式方程,解方程即可;
(2)①设购进甲粽子m个,则乙粽子个,,由题意得,再由甲种粽子的个数不低于乙种粽子个数的2倍,得;
②由一次函数的性质即可得出结论.
【详解】(1)解:设甲粽子每个的进价为x元,则乙粽子每个的进价为元,
由题意得:,
解得:,
经检验:是原方程的解,且符合题意,
则,
答:甲粽子每个的进价为10元,则乙粽子每个的进价为12元;
(2)解:①设购进甲粽子m个,则乙粽子个,利润为w元,
由题意得:,
∵甲种粽子的个数不低于乙种粽子个数的2倍,
∴,
解得:,
∴w与m的函数关系式为;
②∵,则w随m的增大而减小,,即m的最小整数为134,
∴当时,w最大,最大值,
则,
答:购进甲粽子134个,乙粽子66个才能获得最大利润,最大利润为466元.
3.某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.
(1)求A型,B型机器人模型的单价分别是多少元
(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少 最少花费是多少元
【分析】(1)设A型编程机器人模型单价是元,B型编程机器人模型单价是元,根据:用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同即可列出关于x的分式方程,解方程并检验后即可求解;
(2)设购买A型编程机器人模型台,购买A型和B型编程机器人模型共花费元,根据题意可求出m的范围和W关于m的函数关系式,再结合一次函数的性质即可求出最小值
【详解】(1)解:设A型编程机器人模型单价是元,B型编程机器人模型单价是元.
根据题意,得
解这个方程,得
经检验,是原方程的根.
答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元.
(2)设购买A型编程机器人模型台,购买B型编程机器人模型台,购买A型和B型编程机器人模型共花费元,
由题意得:,解得.

即,
∵,
∴随的增大而增大.
∴当时,取得最小值11200,此时;
答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.
4.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.
(1)求甲、乙两种水果的进价分别是多少?
(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?
【分析】(1)设乙种水果的进价是x元/千克,根据“甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克”列出分式方程,解方程检验后可得出答案;
(2)设水果店购进甲种水果a千克,获得的利润为y元,则购进乙种水果(150-a)千克,根据利润=(售价-进价)×数量列出y关于a的一次函数解析式,求出a的取值范围,然后利用一次函数的性质解答.
【详解】(1)解:设乙种水果的进价是x元/千克,
由题意得:,
解得:,
经检验,是分式方程的解且符合题意,
则,
答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;
(2)解:设水果店购进甲种水果a千克,获得的利润为y元,则购进乙种水果(150-a)千克,
由题意得:,
∵-1<0,
∴y随a的增大而减小,
∵甲种水果的重量不低于乙种水果重量的2倍,
∴,
解得:,
∴当时,y取最大值,此时,,
答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.
5.2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进冰墩墩多少个?
(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?
【分析】对于(1),设第一次购进冰墩墩x个,可表示第二次购进的个数,再根据单价的差=10列出分式方程,再检验即可;
对于(2),由(1)可知第二购进冰墩墩的数量,再设每个冰墩墩得标价是a元,根据销售利润率不低于20%列出一元一次不等式,求出解集即可.
【详解】(1)解:设第一次购进冰墩墩x个,则第二次购进2x个,根据题意,得

解得x=200,
经检验,x=200是原方程得解,且符合题意.
所以该商家第一次购进冰墩墩200个;
(2)解:由(1)可知第二次购进冰墩墩的数量是400个,设每个冰墩墩得标价是a元,得
(200+400)a≥(1+20%)(22000+48000),
解得a≥140.
所以每个冰墩墩得标价是140元.
6.“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.
(1)求A型玩具和B型玩具的进价分别是多少?
(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?
【分析】(1)设型玩具的单价为元/件.依题意列出分式方程,进行求解;
(2)根据题意列出不等式进行求解即可.
【详解】(1)设型玩具的单价为元/件.
由题意得:,
解得:
经检验,是原方程的解
B型玩具的单价为元/个
∴A型,B型玩具的单价分别是10元/个,15元/个.
(2)设购进A型玩具个.
解得:
∴最多可购进A型玩具25个.
考查题型二、抽象工程问题类
7.为顺利通过“文明城市”验收,我市拟对城区部分排水骨干道公用设施全面更新改造,为响应城市建设的需要,需在一个月内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的1.5倍,若甲、乙两工程队合作只需12天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是3万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
【分析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需天.再根据“甲、乙两队合作完成工程需要12天”,列出分式方程,解方程即可;
(2)根据(1)中的结果可知,符合要求的施工方案有三种,方案一:甲工程队单独完成;方案二:乙工程队单独完成;方案三:甲、乙两队合作完成.分别计算出所需的工程费用,再比较即可.
【详解】(1)解:设甲工程队单独完成此项工程需x天,则乙工程队天,
由题意:
解得:
经检验:是原方程的解,且符合题意.
答:甲单独完成此项工程,甲需要20天,乙需要30天;
(2)由题意:甲独做、乙独做,或者甲乙合作,均可如期完成工程,
若甲独做,其费用为:(万)
若乙独做,其费用为:(万)
若甲、乙合作,其费用为:(万)

综上:甲工程队单独完成此项工程,既能按时完工,又能使工程费用最少。
8.奥体中心体育场是我市重要的城市名片和地标建筑,见证了重庆体育的灿烂发展,其重要性不言而喻.经过前期周密的准备,重庆市奥体中心体育场顶棚维修改造工程近期开工.现安排甲、乙两个工程队完成,已知由乙队单独施工所需时间为由甲队单独施工所需时间的倍.若甲队先施工天,再由乙队施工天可刚好完成维修工作.
(1)求若由甲队单独施工需要多少天;
(2)已知甲施工队每天的修建费用为 万元,乙施工队每天的修建费用为万元,乙队先施工若干天,后由甲、乙两队共同施工完成,此项目所需总费用不超过万,求甲队最多维修了多少天.
【分析】(1)设若由甲队单独施工需要x天,总工作量为“1”,根据题意列出分式方程,解方程并检验即可求解;
(2)设甲队维修了y天,根据题意列出不等式,解不等式即可求解.
【详解】(1)解:设若由甲队单独施工需要x天,总工作量为“1”,

解得.
经检验,是原方程的解,且符合题意,
答:若由甲队单独施工需要60天.
(2)解:设甲队维修了y天,

解得.
∴取最大整数为
答:甲队最多维修了天.
9.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.
(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.
【详解】解:(1)设乙队单独完成需x天.
根据题意,得:.
解这个方程得:x=90.
经检验,x=90是原方程的解.
∴乙队单独完成需90天.
(2)设甲、乙合作完成需y天,则有,
解得,y=36;
①甲单独完成需付工程款为:60×3.5=210(万元).
②乙单独完成超过计划天数不符题意,
③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.
10.两个工程队共同参与一项筑路工程,甲队单独施工30天完成总工程的,这时增加了乙队,两队又共同工作了15天,完成全部工程.
(1)求乙队单独施工多少天完成全部工程?
(2)若甲队工作4天,乙队工作3天共需支付工程劳务费42000元,甲队工作5天,乙队工作6天共需支付工程劳务费75000元,求甲、乙两队工作一天的劳务费分别为多少元?
(3)在(2)的条件下,若两个工程队不同时施工,在总劳务费不超过28万元的情况下,则最快______天能完成总工程.
【分析】(1)设乙队单独施工x天完成全部工程,根据甲队单独施工30天完成总工程的求出甲队单独施工完成全部工程的天数,根据两队完成工程量的和等于总工程量列方程,求得乙队单独施工30天完成全部工程,注意分式方程要检验;
(2)设甲、乙两队工作一天的劳务费分别为m元、n元, 根据甲队工作4天,乙队工作3天共需支付工程劳务费42000元,甲队工作5天,乙队工作6天共需支付工程劳务费75000元,列方程组求解, 得到甲、乙两队工作一天的劳务费分别为3000元、10000元;
(3)设甲队单独施工a天,乙队单独施工b天,根据两个工程队不同时施工,总劳务费不超过28万元,两队完成工程量等于总工程量,列出与,求出a的取值范围,根据最快完成总工程的要求,求出的最小值即可.
【详解】(1)设乙队单独施工x天完成全部工程,
∵甲队单独施工完成全部工程的天数是(天),
∴,
解得,,
经检验,是所列方程的根,且符合题意,
故乙队单独施工30天完成全部工程;
(2)设甲、乙两队工作一天的劳务费分别为m元、n元,
∴,
解得,,
故甲、乙两队工作一天的劳务费分别为3000元、10000元;
(3)设甲队单独施工a天,乙队单独施工b天,

∵,
∴,
∴,
∴,
∵,且,

∴在总劳务费不超过28万元的情况下,则最快70天能完成总工程.
故答案为:70.
11.2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积平方公里,计划2025年基本建成.若甲、乙两个工程队计划参与修建“特色小镇”中的某项工程,已知由甲单独施工需要18个月完成任务,若由乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元,向乙工程队支付施工费用5万元.
(1)乙队单独完工需要几个月才能完成任务?
(2)为保证该工程在两年内完工,且尽可能的减少成本,承建公司决定让甲、乙两个工程队同时施工,并将该工程分成两部分,甲队完成其中一部分工程用了a个月,乙队完成另一部分工程用了b个月,已知甲队施工时间不超过6个月,乙队施工时间不超过24个月,且a,b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?
【分析】(1)设乙单独完成需要个月,由“乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.”建立分式方程求解即可;
(2)由题意可得:,可得,结合,,可得,结合都为正整数,可得为3的倍数,可得甲乙两队实际施工的时间安排有3种方式,从而可得答案.
【详解】(1)解:设乙单独完成需要个月,则

解得:,
经检验是原方程的解且符合题意;
答:乙队单独完工需要27个月才能完成任务.
(2)由题意可得:,
∴,
∴,
∵,,
∴,解得:,
∵都为正整数,
∴为3的倍数,
∴或或,
∴甲乙两队实际施工的时间安排有3种方式,
方案①:安排甲工作6个月,乙工作18个月,费用为:(万元),
方案②:安排甲工作4个月,乙工作21个月,费用为:(万元),
方案③:安排甲工作2个月,乙工作24个月,费用为:(万元),
∴安排甲工作2个月,乙工作24个月,费用最低为万元.
12.为丰富教职工业余生活,提高身体素质,某校准备改建室内运动场,根据甲、乙两个施工单位的招标预算,甲施工单位独立施工一天,需付工程款1.5万元,且刚好如期完成改建工程,乙施工单位独立施工一天,需付工程款0.8万元,但完成这项改建工程要比规定日期多用6天;若甲、乙两施工单位合作3天,余下的工程由乙施工单位单独做,也正好如期完成.
(1)求乙施工单位单独完成此项改建工程需要多少天;
(2)若不考虑工期,由乙施工单位先施工若干天,再由甲施工单位施工完成,要使两个施工单位施工总费用为9.4万元,则乙工程队应施工多少天?
【分析】(1)设乙施工单位单独完成此项改建工程需要天,则甲施工单位需天,根据题意,工作效率工作时间工作总量,列出分式方程求解即可;
(2)设乙施工单位施工天,则完成了整项工程的,再根据工作时间得到甲的施工时间,再利用每天的施工费用施工时间列出方程求解即可.
【详解】(1)解:设乙施工单位单独完成此项改建工程需要天,则甲施工单位需天,
由题意得:,
解得:,
经检验,是原分式方程的解,且符合题意,
答:乙施工单位单独完成此项改建工程需要12天.
(2)解:设乙施工单位施工天,则完成了整项工程的,
甲施工单位施工天,
由题意得:,
解得:,
答:乙工程队应施工8天.
考查题型三、具体工程问题类
13.为保障水果种植基地用水,简要修建灌溉水渠.计划修建灌溉水渠米,由甲、乙两个施工队合作完成.乙施工队每天比甲施工队每天多修建30米,甲施工队单独完成修建任务所需天数是乙施工队单独完成修建任务所需天数的.
(1)求甲、乙两施工队每天各修建多少米;
(2)已知甲施工队每天的修建费用为9万元,乙施工队每天的修建费用为12万元,若先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好14天完成修建任务,求共需修建费用多少万元.
【分析】(1)设甲施工队每天修建米,则乙施工队每天修米,根据题意列出分式方程即可求解;
(2)设先由甲施工队单独修建天,再由甲、乙两个施工队合作修建天,根据题意列出一元一次方程求出,甲施工的天数以及甲乙合作施工的天数,问题随之得解.
【详解】(1)设甲施工队每天修建米,则乙施工队每天修米,
根据题意,有:,
解得:(米),
经检验,是原方程的根,
(米),
答:甲施工队每天修建米,则乙施工队每天修米;
(2)设先由甲施工队单独修建天,再由甲、乙两个施工队合作修建天,
根据题意有:,
解得:(天),
(天),
则甲、乙两个施工队合作修建天
则总计费用为:(万元),
答:共需修建费用万元.
14.某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,根据题意列出分式方程,解方程、检验后即可解答;
(2设公司计划采购A型机器m台,则采购B型机器台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可.
【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,
由题意可得:,
解得:
经检验,是分式方程的解
每台A型机器每天搬运吨
答:每台A型机器,B型机器每天分别搬运货物90吨和100吨
(2)解:设公司计划采购A型机器m台,则采购B型机器台
由题意可得:,
解得:,
公司采购金额:

∴w随m的增大而减小
∴当时,公司采购金额w有最小值,即,
∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.
15.为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线2.4 km,甲队比乙队少用4天.
(1)求甲,乙两个工程队每天各修路多少km?
(2)现计划再修建长度为12 km的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?
【分析】
(1)设乙队每天修路,则甲队每天修路,根据两队各自修建快线2.4 km,甲队比乙队少用4天,列出方程进行求解即可;
(2)设安排乙工程队施工天,根据甲队的费用加上乙队的费用小于等于38万元,列出不等式进行求解即可.
【详解】(1)解:设乙队每天修路,则甲队每天修路,由题意,得:

解得:,
经检验,,是原方程的解;
∴,
答:甲,乙两个工程队每天各修路;
(2)解:设安排乙工程队施工天,由题意,得:

解得:;
∴至少安排乙工程队施工天.
16.为了加快推进环境建设,构建生态宜居城市,实现“河畅、水清、岸绿、景美”的目标,九龙坡区计划安排甲、乙两个施工队对一条全长为4100米的河道进行清淤施工.经调查知:甲队每天清淤的河道长度是乙队每天清淤的河道长度的倍,甲队清淤1200米的河道比乙队清淤同样长的河道少用2天.
(1)甲、乙两队每天清淤的河道长度分别是多少米?
(2)若该条河道先由甲队单独清淤2天,余下的河道由甲乙两队合作清淤.已知甲队施工一天的费用为万元,乙队施工一天的费用为万元,求完成该条河道清淤施工的总费用.
【分析】(1)设乙队每天清淤的河道长度是x米,则甲队每天清淤的河道长度是米,利用工作时间=工作总量:工作效率,结合甲队清淤1200米的河道比乙队清淤同样长的河道少用2天,可得出关于x的分式方程,解之经检验后,可得出乙队每天清淤的河道长度,再将其代入中,即可得出甲队每天清淤的河道长度;
(2)设乙队施工y天,则甲队施工天,利用工作总量=工作效率工作时间,可得出关于y的一元一次方程,解之可得出y的值,再将其代入中,即可求出结论.
【详解】(1)解:设乙队每天清淤的河道长度是x米,则甲队每天清淤的河道长度分别是米,
根据题意得,
解得,
经检验,是所列方程的解,且符合题意,
∴,
答:甲队每天清淤的河道长度是300米,乙队每天清淤的河道长度分别是200米;
(2)解:设乙队施工y天,则甲队施工天,
根据题意得,
解得:,
∴,
答:完成该条河道清淤施工的总费用是万元.
17.重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的,而乙施工队单独修建这项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.
(1)求甲、乙两施工队每天各修建多少米?
(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?
【分析】(1)设甲施工队每天修建米,则乙施工队每天修建米,根据乙施工队单独修建这项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天,列出方程进行求解即可;
(2)设乙施工队干了天,根据先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,列出方程,求出,分别求出甲,乙两队的修建费,即可得解.
【详解】(1)解:设甲施工队每天修建米,则乙施工队每天修建米,由题意,得:,
解得:,
经检验是原方程的解,
∴,
∴甲施工队每天修建米,乙施工队每天修建米;
(2)设乙施工队干了天,由题意,得:,
解得:,
∴乙施工队修建了3天,
∴共需修建费用万元;
答:共需修建费用万元.
18.某地计划修建一条长36千米的乡村公路,已知甲工程队修路的速度是乙工程队修路速度的倍,乙工程队单独完成本次修路任务比甲工程队单独完成多20天.
(1)求甲、乙两个工程队每天各修路多少千米?
(2)已知甲工程队修路费用为25万元/千米,乙工程队修路费用为20万元/千米.甲工程队先单独修路若干天后,接到其它任务需要离开,剩下的工程由乙工程队单独完成.若要使修路总时间不超过55天,总费用不超过820万元,且甲工程队所修路程需为整数,请问共有几种修路方案?哪种方案最省钱?
【分析】(1)设乙工程队每天修路千米,则甲工程队每天修路千米,根据乙工程队单独完成本次修路任务比甲工程队单独完成多20天,列出方程,进行求解即可;
(2)设甲工程队修路天,根据修路总时间不超过55天,总费用不超过820万元,列出不等式组,求出的取值范围,确定方案,设花费的总费用为,列出一次函数解析式,利用一次函数的性质,即可得出结论.
【详解】(1)解:设乙工程队每天修路千米,则甲工程队每天修路千米,
由题意,得:,
解得:,
经检验,是原方程的解,

答:甲工程队每天修路千米,乙工程队每天修路千米;
(2)解:设甲工程队修路天,由题意,得∶
,解得:,
∵为整数,
∴可以取:;
∴共有13种方案;
设共需花费万元,由题意,得:

∵,随着的增大而增大,
∴当时,的值最小,
即:甲单独干10天,剩下的乙单独修完,最省钱.
答:共有13种方案,其中甲单独干10天,剩下的乙单独修完,最省钱.
考查题型四、路程问题类
19.甲、乙两车同时从地出发前往地,其中甲车选择有高架的路线,全程共,乙车选择没有高架的路线,全程共.甲车行驶的平均速度比乙车行驶的平均速度每小时快千米,乙车到达地花费的时间是甲车的倍.问甲、乙两车行驶的平均速度分别是多少?
【分析】设乙车行驶的平均速度为xkm/h,则甲车行驶的平均速度为(x+20)km/h.根据“乙车到达B地花费的时间是甲车的1.2倍”列方程求解即可.
【详解】设乙车行驶的平均速度为xkm/h,则甲车行驶的平均速度为(x+20)km/h.根据题意,得:
解得:x=55.
经检验,x=55是所列方程的解.
当x=55时,x+20=75.
答:甲车行驶的平均速度为75km/h,乙车行驶的平均速度为55km/h.
20.重庆某中学甲、乙两学生到杭州参加移动机器人比赛,拟乘坐高铁,订票后发现重庆到杭州高铁的平均时速提高了,结果到杭州的时间比预计缩短了1小时20分钟,已知重庆到杭州的高铁全长为1600公里.
(1)求提速后重庆到杭州高铁的平均时速?
(2)在乘坐高铁时,甲同学先花1小时完成了全部模块任务检测的,乙同学也加入检测,两人合作3小时完成了余下的模块任务检测.若由乙同学独自检测,能否只花实际乘坐高铁时间的完成全部模块任务检测?
【分析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
(1)设提速前该高铁从重庆到杭州的平均时速是公里小时,则提速后的平均时速是公里小时,根据到杭州的时间比预计缩短了1小时20分钟,列出分式方程,解方程即可;
(2)设乙同学独自完成全部模块任务检测需小时,根据甲同学先花1小时完成了全部模块任务检测的,乙同学也加入检测,两人合作3小时完成了余下的模块任务检测.列出分式方程,解方程,即可解决问题.
【详解】(1)解:设提速前该高铁从重庆到杭州的平均时速是公里小时,则提速后的平均时速是公里小时,1小时20分钟小时,
由题意得:,
解得:,
经检验,是原方程的解,且符合题意,

答:提速后重庆到杭州高铁的平均时速是240公里小时;
(2)解:设乙同学独自完成全部模块任务检测需小时,
由题意得:,
解得:,
经检验,是原方程的解,

乙不能只花乘坐高铁时间的完成全部模块任务检测,
答:乙不能只花乘坐高铁时间的完成全部模块任务检测.
21.港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥开通前从香港到珠海的车程为180千米,开通后的车程缩短了130千米,行驶时间仅为原来行驶时间的,已知港珠澳大桥开通后从香港到珠海的平均时速比开通前的平均时速多40千米.
(1)港珠澳大桥开通后,
①从香港到珠海的车程为______千米;
②开通后的行驶时间=开通前的行驶时间×______;
(2)求港珠澳大桥开通后从香港到珠海的平均速度是多少?
【详解】(1)解:根据题意得:港珠澳大桥开通后,
①从香港到珠海的车程为(千米),
②开通后的行驶时间=开通前的行驶时间.
故答案为:①50;②;
(2)解:设港珠澳大桥开通后从香港到珠海的平均速度是x千米/小时,则港珠澳大桥开通前从香港到珠海的平均速度是千米/小时,
根据题意得:,
解得:,
经检验,是所列方程的解,且符合题意.
答:港珠澳大桥开通后从香港到珠海的平均速度是100千米/小时.
22.金秋时节,八年级的同学组织去公园秋游,从景区出发到相距10千米的景区,公园有4座脚踏车和7座电瓶车(不包含司机)两种交通工具可供租用,一部分学生骑脚踏车从景区先出发,过了20分钟后,其余学生乘电瓶车出发,结果他们同时到达景区.已知电瓶车的速度是骑脚踏车学生速度的2倍,租用一辆脚踏车100元,租用一辆电瓶车400元.
(1)请问骑脚踏车学生的速度为多少千米/小时 (请列分式方程解答)
(2)现共租用脚踏车和电瓶车20辆,使可乘坐学生的总数不低于110人,且租车总费用不超过5600元,请求出费用最少的租车方案及最少费用.
【分析】本题考查分式方程的应用、一元一次不等式组的应用,解答关键是理解题意,找到对应关系式.
(1)设骑脚踏车学生的速度为x千米/小时,根据题意列分式方程求解即可;
(2)设租用脚踏车a辆,租用电瓶车辆,根据题意列出一元一次不等式组求解a的取值范围,进而根据a为整数分别求得租车费用即可求解.
【详解】(1)解:设骑脚踏车学生的速度为x千米/小时,
根据题意,得,
解得,
经检验,是所列方程的解,
(千米/小时),
答:骑脚踏车学生的速度为15千米/小时;
(2)解:设租用脚踏车a辆,租用电瓶车辆,
根据题意,得,
解得,
∵a为整数,
∴a可取8、9、10,
当时,(元),
当时,(元),
当时,(元),
∵,
∴租用脚踏车10辆,租用电瓶车10辆时,租车费用最少,最少费用为5000元.中小学教育资源及组卷应用平台
5.5分式方程的应用题 分层练习
考查题型一、商品购买类(考查次数最多)
1.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少万元,且用万元购买A型充电桩与用万元购买B型充电桩的数量相等.
(1)A,B两种型号充电桩的单价各是多少?
(2)该停车场计划共购买个A,B型充电桩,购买总费用不超过万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?
2.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.
(1)甲、乙两种粽子每个的进价分别是多少元?
(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为w元.
①求w与m的函数关系式,并求出m的取值范围;
②超市应如何进货才能获得最大利润,最大利润是多少元?
3.某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.
(1)求A型,B型机器人模型的单价分别是多少元
(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少 最少花费是多少元
4.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.
(1)求甲、乙两种水果的进价分别是多少?
(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?
5.2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进冰墩墩多少个?
(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?
6.“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.
(1)求A型玩具和B型玩具的进价分别是多少?
(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?
考查题型二、抽象工程问题类
7.为顺利通过“文明城市”验收,我市拟对城区部分排水骨干道公用设施全面更新改造,为响应城市建设的需要,需在一个月内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的1.5倍,若甲、乙两工程队合作只需12天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是3万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
8.奥体中心体育场是我市重要的城市名片和地标建筑,见证了重庆体育的灿烂发展,其重要性不言而喻.经过前期周密的准备,重庆市奥体中心体育场顶棚维修改造工程近期开工.现安排甲、乙两个工程队完成,已知由乙队单独施工所需时间为由甲队单独施工所需时间的倍.若甲队先施工天,再由乙队施工天可刚好完成维修工作.
(1)求若由甲队单独施工需要多少天;
(2)已知甲施工队每天的修建费用为 万元,乙施工队每天的修建费用为万元,乙队先施工若干天,后由甲、乙两队共同施工完成,此项目所需总费用不超过万,求甲队最多维修了多少天.
9.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
10.两个工程队共同参与一项筑路工程,甲队单独施工30天完成总工程的,这时增加了乙队,两队又共同工作了15天,完成全部工程.
(1)求乙队单独施工多少天完成全部工程?
(2)若甲队工作4天,乙队工作3天共需支付工程劳务费42000元,甲队工作5天,乙队工作6天共需支付工程劳务费75000元,求甲、乙两队工作一天的劳务费分别为多少元?
(3)在(2)的条件下,若两个工程队不同时施工,在总劳务费不超过28万元的情况下,则最快______天能完成总工程.
11.2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积平方公里,计划2025年基本建成.若甲、乙两个工程队计划参与修建“特色小镇”中的某项工程,已知由甲单独施工需要18个月完成任务,若由乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元,向乙工程队支付施工费用5万元.
(1)乙队单独完工需要几个月才能完成任务?
(2)为保证该工程在两年内完工,且尽可能的减少成本,承建公司决定让甲、乙两个工程队同时施工,并将该工程分成两部分,甲队完成其中一部分工程用了a个月,乙队完成另一部分工程用了b个月,已知甲队施工时间不超过6个月,乙队施工时间不超过24个月,且a,b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?
12.为丰富教职工业余生活,提高身体素质,某校准备改建室内运动场,根据甲、乙两个施工单位的招标预算,甲施工单位独立施工一天,需付工程款1.5万元,且刚好如期完成改建工程,乙施工单位独立施工一天,需付工程款0.8万元,但完成这项改建工程要比规定日期多用6天;若甲、乙两施工单位合作3天,余下的工程由乙施工单位单独做,也正好如期完成.
(1)求乙施工单位单独完成此项改建工程需要多少天;
(2)若不考虑工期,由乙施工单位先施工若干天,再由甲施工单位施工完成,要使两个施工单位施工总费用为9.4万元,则乙工程队应施工多少天?
考查题型三、具体工程问题类
13.为保障水果种植基地用水,简要修建灌溉水渠.计划修建灌溉水渠米,由甲、乙两个施工队合作完成.乙施工队每天比甲施工队每天多修建30米,甲施工队单独完成修建任务所需天数是乙施工队单独完成修建任务所需天数的.
(1)求甲、乙两施工队每天各修建多少米;
(2)已知甲施工队每天的修建费用为9万元,乙施工队每天的修建费用为12万元,若先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好14天完成修建任务,求共需修建费用多少万元.
14.某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.
(1)求每台A型机器,B型机器每天分别搬运货物多少吨?
(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.
15.为方便群众出行,甲、乙两个工程队负责修建某段通往高铁站的快线,已知甲队每天修路的长度是乙队的1.5倍,如果两队各自修建快线2.4 km,甲队比乙队少用4天.
(1)求甲,乙两个工程队每天各修路多少km?
(2)现计划再修建长度为12 km的快线,由甲、乙两个工程队来完成.若甲队每天所需费用为1万元,乙队每天所需费用为0.6万元,求在总费用不超过38万元的情况下,至少安排乙工程队施工多少天?
16.为了加快推进环境建设,构建生态宜居城市,实现“河畅、水清、岸绿、景美”的目标,九龙坡区计划安排甲、乙两个施工队对一条全长为4100米的河道进行清淤施工.经调查知:甲队每天清淤的河道长度是乙队每天清淤的河道长度的倍,甲队清淤1200米的河道比乙队清淤同样长的河道少用2天.
(1)甲、乙两队每天清淤的河道长度分别是多少米?
(2)若该条河道先由甲队单独清淤2天,余下的河道由甲乙两队合作清淤.已知甲队施工一天的费用为万元,乙队施工一天的费用为万元,求完成该条河道清淤施工的总费用.
17.重庆市潼南区是中国西部绿色菜都,为全市人民提供了新鲜多样的蔬菜.今年,区政府着力打造一个新的蔬菜基地,计划修建灌溉水渠1920米,由甲、乙两个施工队合作完成.已知乙施工队每天修建的长度是甲施工队每天修建的长度的,而乙施工队单独修建这项工程需要的天数比甲施工队单独修建这项工程需要的天数少4天.
(1)求甲、乙两施工队每天各修建多少米?
(2)若甲施工队每天的修建费用为13万元,乙施工队每天的修建费用为15万元,实际修建时先由甲施工队单独修建若干天,再由甲、乙两个施工队合作修建,恰好12天完成修建任务,求共需修建费用多少万元?
18.某地计划修建一条长36千米的乡村公路,已知甲工程队修路的速度是乙工程队修路速度的倍,乙工程队单独完成本次修路任务比甲工程队单独完成多20天.
(1)求甲、乙两个工程队每天各修路多少千米?
(2)已知甲工程队修路费用为25万元/千米,乙工程队修路费用为20万元/千米.甲工程队先单独修路若干天后,接到其它任务需要离开,剩下的工程由乙工程队单独完成.若要使修路总时间不超过55天,总费用不超过820万元,且甲工程队所修路程需为整数,请问共有几种修路方案?哪种方案最省钱?
考查题型四、路程问题类
19.甲、乙两车同时从地出发前往地,其中甲车选择有高架的路线,全程共,乙车选择没有高架的路线,全程共.甲车行驶的平均速度比乙车行驶的平均速度每小时快千米,乙车到达地花费的时间是甲车的倍.问甲、乙两车行驶的平均速度分别是多少?
20.重庆某中学甲、乙两学生到杭州参加移动机器人比赛,拟乘坐高铁,订票后发现重庆到杭州高铁的平均时速提高了,结果到杭州的时间比预计缩短了1小时20分钟,已知重庆到杭州的高铁全长为1600公里.
(1)求提速后重庆到杭州高铁的平均时速?
(2)在乘坐高铁时,甲同学先花1小时完成了全部模块任务检测的,乙同学也加入检测,两人合作3小时完成了余下的模块任务检测.若由乙同学独自检测,能否只花实际乘坐高铁时间的完成全部模块任务检测?
21.港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥开通前从香港到珠海的车程为180千米,开通后的车程缩短了130千米,行驶时间仅为原来行驶时间的,已知港珠澳大桥开通后从香港到珠海的平均时速比开通前的平均时速多40千米.
(1)港珠澳大桥开通后,
①从香港到珠海的车程为______千米;
②开通后的行驶时间=开通前的行驶时间×______;
(2)求港珠澳大桥开通后从香港到珠海的平均速度是多少?
22.金秋时节,八年级的同学组织去公园秋游,从景区出发到相距10千米的景区,公园有4座脚踏车和7座电瓶车(不包含司机)两种交通工具可供租用,一部分学生骑脚踏车从景区先出发,过了20分钟后,其余学生乘电瓶车出发,结果他们同时到达景区.已知电瓶车的速度是骑脚踏车学生速度的2倍,租用一辆脚踏车100元,租用一辆电瓶车400元.
(1)请问骑脚踏车学生的速度为多少千米/小时 (请列分式方程解答)
(2)现共租用脚踏车和电瓶车20辆,使可乘坐学生的总数不低于110人,且租车总费用不超过5600元,请求出费用最少的租车方案及最少费用.