中小学教育资源及组卷应用平台
第八章《二元一次方程组》单元检测题
一、选择题(每题3分,共30分)
1.二元一次方程2x-y=11的一个解可以是( )
A. B. C. D.
2.用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A.①×2﹣② B.②×(﹣3)﹣① C.①×(﹣2)+② D.①﹣②×3
3.已知方程组,则x+2y的值为( )
A.2 B.1 C.-2 D.3
4. 若方程组与方程组有相同的解,则a,b的值分别为 ( )
A. , B. , C. , D. ,
5. 已知关于x,y的方程组与有相同的解,则a+b=( )
A. B. C. D.
6. 已知方程组和有相同的解,则a、b的值分别为( )
A. B. C. D.
7.若和是方程的两组解,则m,n的值分别为( )
A., B.2,4 C.4,2 D.,
8.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则( )
A.x-y=20 B.x+y=20 C.5x-2y=60 D.5x+2y=60
10.《算法统宗》中有如下问题:“哑巴来买肉,难言钱数目,一斤少二十五,八两多十五,试问能算者,合与多少肉”,意思是一个哑巴来买肉,说不出钱的数目,买一斤(两)还差二十五文钱,买八两多十五文钱,问肉数和肉价各是多少?设肉价为文/两,哑巴所带的钱数为文,则可建立方程组为( )
A. B. C. D.
二、填空题(每题3分,共24分)
11.已知方程,用含x的代数式表示y,则 _________.
12.若是方程的一组解,则__________.
13.若关于x,y的二元一次方程3x+ay=1有一个解是,则a=____.
14.已知方程组的解为,则的值为__________.
15.已知是方程3mx﹣y=﹣1的解,则m=_____.
16.若关于的二元一次方程组的解是互为相反数,则的值是_________.
17.如图,将左侧所示的个大小、形状完全相同的小长方形放置在右侧的大长方形中,所标尺寸如图所图中含有阴影部分的总面积为________.
18.我国明代数学读本《算法统宗》中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.问:索子与竿子分别长多少托?若设索子长托,竿子长托,则列方程组为______.
三.解答题(46分,第20题6分,19、21、22、23、24每题8分)
19.解方程组:
(1); (2).
(3) (4)
20.已知关于的方程组的解满足,则的取值.
21.已知关于,的方程组
(1)请直接写出方程的所有正整数解;
(2)若方程组的解满足,求的值;
(3)无论实数取何值,方程总有一个公共解,请直接写出这个公共解.
22.如图,在长为10米,宽为8米的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).求其中一个小长方形的长和宽.
23.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?
阶梯 电量 电价
一档 0~180度 0.6元/度
二档 181~400度 二档电价
三档 401度及以上 三档电价
24. 我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:
运行区间 票价
上车站 下车站 一等座 二等座
余姚北 杭州东 82(元) 48(元)
(1)参加社会实践的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).
【答案】
一、选择题:
题号 1 2 3 4 5 6 7 8 9 10
答案 A D B A D B C B A C
二、填空题:
11. y=﹣2x+3.
12. 2或4.
13. .
14.6
15.
16.9
17. .
18..
三.解答题
19.解:(1)
,
把①代入②得:4(2y﹣1)+3y=7,
解得:y=1,
把y=1代入①得:x=1,
则方程组的解为;
(2)
,
①+②得:4x=4,
解得:x=1,
把x=1代入①得:y=﹣2,
则方程组的解为.
(3)
①+②×3,得10x=50,
解得x=5.
把x=5代入②,
得2×5+y=13,解得y=3.
于是,得方程组的解为
(4)
①+②得3x+4z=-4.④
④+③×2得x=-2.
把x=-2代入①得y=1.
把x=-2代入③得z=.
所以
20.a> 1
21.(1);(2);(3).
22. 8
【解析】
设小长方形的长为 x 米,宽为y米. 依题意有:解方程组即可.
解: 设小长方形的长为 x 米,宽为y米.
依题意有:
解此方程组得:
故,小长方形的长为 4米,宽为2米.
23.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?
阶梯 电量 电价
一档 0~180度 0.6元/度
二档 181~400度 二档电价
三档 401度及以上 三档电价
解:设二档电价是x元/度,三档电价是y元/度.根据题意,得
解得
答:二档电价是0.7元/度,三档电价是0.9元/度.
24. (1)老师5人,家长15人,学生60人.(2)①当0<m<60时,y=6560﹣46m;②当60≤m<80时,y=5840﹣34m.
【解析】
(1)设教师人数为x人,学生家长人数为3x人,学生人数为y人,根据:若都买一等座单程火车票需6560元、若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折)列方程组求解可得;
(2)根据0<m<60、60≤m<80分别列式表示即可.
【详解】
解:(1)设教师人数为x人,学生家长人数为3x人,学生人数为y人.
由题意得:,
解得:,
∴3x=3×5=15
答:老师5人,家长15人,学生60人.
(2)①当0<m<60时,y=82(80﹣m)+48×75%m=6560﹣46m;
②当60≤m<80时,y=48×75%×60+48(m﹣60)+82(80﹣m)=5840﹣34m.
【点睛】
本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.
(北京)股份有限公司