科日:数学
(试题卷A)
适用地区:新教材地区
注意事项:
1.答题前,考生务必将自己的姓名、准考证号等写在答题卡和试题卷上的规
定位置,并认真核对条形码上的相关信息。
2.考生在答题卡上需按要求答题等生必须在答题卡上各题目规定的答题区
域内答题,超出答题区域书写答案无效。在本试题卷和草稿纸上答题无效。
3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答
案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题
时,请按题号用0.5毫米黑色墨水签字笔书写。
4.请勿折叠答题卡。保持字体工整、笔迹清晰、卡面清洁。考试结束后,将
本试题卷和答题卡一并交回。
5.本试题卷共7页,如缺页,考生须声明,否则后果自负。
姓
名:
准考证号:
2024年普通高等学校招生全国统一考试·临考押题卷A
数学
注意事项:
1.本试题卷共7页,满分150分,考试时间120分钟.
2.答题前,考生务必将自己的姓名、准考证号等填写在答题卡的相应位置,
3.全部答案在答题卡上完成,答在本试题卷上无效
4.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需
改动,用橡皮擦干净后,再选涂其他答案标号,
5.考试结束后,将本试题卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一
项是符合题目要求的。
1.在等比数列{am}中,a1=2,a4a5a6=a7a8,则a2十a5=
A.36
B.32
C.16
D.12
2.在△ABC中,AB=4AD,C宠=2ED,若BC=λAE+CD,则
(
A.λ十4=5
B.λ-4=1
C.λ4=6
3.在△ABC中,“cos(B+C)=cos(A+C)”是“△ABC为等腰三角形”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.已知正四棱柱的底面棱长与侧棱长之比为1·2,且其外接球的表面积为36π,则该
正四棱柱的侧面积为
()
A.12
B.24
C.36
D.48
5.已知a,b∈(一∞,0),且a+4b=ab一5,则ab的取值范围为
A.[25,+∞)
B.[1,+o∞)
C.(0,5]
D.(0,1]
数学·临考押题卷A·第1页(共7页)
6.已知函数子x)=2,()=osx,知图为函数A红)的图象,则A)可
能为
()
A,h(x)=f(x)十g(x)
B.h(x)=f(x)一g(x)
C.h(x)=f(z)g(x)
D.h(z)=f(z)
8(x)
.已知双曲线C:。-=1(@>0,b>0)的虚轴长为4,C的一条渐近线与曲线y
3
sinx在x=x处的切线垂直,M,N为C上不同两点,且以MN为直径的圆经过
1
坐标原点O,则1OM+1ON
B.4
c
D.2
8.已知函数h(x)=cos2z十asinr--
号e≥》若A:在区间@x0n∈N)内恰
好有2022个零点,则n的取值可以为
A.2025
B.2024
C.1011
D.1348
二、选择题:本题共3小题,每小题6分,共18分,在每个小题给出的选项中,有多项符
合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知集合A,B,若A={1gx≤1},且A∩B=(0,3],则集合B可以为()
A.{y|y=√3-z}
B.{xly=√3-x}
Dzg≤0
数学·临考押题卷A·第2页(共7页)数学
2024年普通高等学校招生全国统一考试·临考押题卷A
数学
一、选择题
园评分标准
第1一8愿为单选题,每小掏
2
3
6
5分,只有一个正确选项,凡与
A
A
◇
A
0
正扇进项不符的均不给分
1,A等比数列的通项公式
【全能解析】设等比数列{a。}的公比为g(g≠0).因为a4a:a6=a,ag,所以
a1=g.又:=2,所以2g3=g,解得g=2,所以an=2",则a2十a:=4
32-36,故选4.
@押命题风向
在逃择题或填空隐中有关等差数列、等比数列的考查多以“基本晋”的运草和“基本
性质”为主,好上手,易得分
2.C平面向量的基本定理
【全能解析】依题意,BC=DC-D克=-CD-3A)=-CD-3(A立+ED)
-CD-3AE-C方=-3AE-2CD,所以1=- 《-2,所以A十红=-5,
入-4=-1,μ=6,
合号做选C
@押命题风向
平面向量的考查多以平面向造的线性运算和数量积为主,多以简单题或中档通为
主,藓有雉题
3.A三角函数的诱导公式+余弦函数的性质十充分条件与必要条件的
6技巧点拔
判断
根据三角形内角和定理,运用透
【全能解析】因为A,B,C分别为△ABC的内角,所以cos(B十C)=一c0sA,
学公式
cos(A-C)=-cosB,即-cosA--csB,所以cosA=cosB.又A,B∈(0,
x),所以A=B,所以△ABC为等腰三角形,所以充分性成立;在等腰
△ABC中,若A-C=30°,则B=120°,此时0s(B+C)=cos150°≠s60=
cs(1十C),所以必要性不成立,所以“cos(B+C)=cs(1十C)”是“△ABC为等
腰三角形”的充分不必要条件,故选A
解题彩略
带见充分条件与必要条件的考查方式及解通策略:
(1)】的元分不必要条件是B台B是A的充分不必要条件台柴合B是集合A的真
子集:
(2)A是B的必要不充分条什台B是A的充分不必要条件台集合B是柴合A的真
子柴
一数学·临考押题卷A·答21一
高考解题规律,钟分解蔚筑
4.D正四棱柱的结构特征及侧面积+球的表面积
【全能解析】设正四楼柱的底面棱长为a,则侧棱长为2a.因为其外接球的表
面积为36π,设其外接球的半径为R,则4元R2=36π,解得R=3,所以
√a+a十(2a)2=2X3,解得a=6,则该正四棱柱的侧面积为aX2a×4=
√6×2w6X4=48,故选D.
回押命题风向
球的切接问题,是高考的热点问题,在解决多面体与球的切接问题时,关健是骑定
好球心的住置,几何体的内切球的本质特征是球心到多面体各个面的距离相等且
都为球的半径,几何依的外接球的本质特征是球心到几何体各个项点的距离相等
且都为球的半径。
5.D基本不等式
V易错普示
【全能解析】因为a,b∈(-∞,0),a十4b=ab一5,所以0
利用基本不等式求最植时,一定
-[(-a)+4(-b)]s≤-2√4ab=-4√ad,即ab十4√ab-5≤0,即(√ad+5)·
要注意造用条件是否满是:
(Wab-1)≤0,解得0一“正”、二“定”、三“相等,这既是
46=一2时,等号成立,故选D.
适用前提,也是解题的基本过程。
6.C函数的奇偶性十函数的图象
当连续多次使用叁本不等式时,
一定要保证每个“等号”成立的条
〖全能解析】依题意可知,函数f(x)的定义落的R,f(一x)= 号
件,只有保证所有的等号同时成立
一f(x),所以函数∫(x)为奇函数.函鞭君(x)的定义域为{x|x≠0),
时,才能保持求得最侦的准骑性
g(-x)=log:|一x|=g(x),所以函缴落(x)为偶函数.对于A选项,h(x)=
f(x)十g(x)的定义域为{xx≠6,(x)既不是奇函数也不是偶函数,所以
A选项不符合题意;对于B选项,函数h(x)=f(x)一g(x)的定义域为{x|x≠
0},h(x)既不是奇函数也不是偶函数,所以B选项不符合题意;对于C选项,
函数h(x)=f(x)g(x)的定义域为{xx≠0},h(-x)=一h(x),所以h(x)为
奇函数,符合题意:对于D选项,函效(z)=号的定义域为zz≠0且
x≠士1},显然D选项不符合题意,故选C.
解题策好
(1)判断函数∫(x)的奇俩性时,首先要判断定义城是否关于坐标原点对称,若定义
城不关于坐标原点对称,则函数f(x)不具有奇偶性:若定义城关于坐标原点对称,弃研
完f(-x)与f(x)的关系,若f(x)--f(u),则盛数f代x)为寺函数;若(x)=
F(x),对函数∫(x)为偶函数有时也通进其等价形式进行判断,如f(一x)一f(x)=O,
f(-x)一f(x)=0等.
(2)分段函致的奇偶性,应这根据x的取值范围分较讨论,分别进行判断
7.A双曲线的标准方程与几何性质十直线与双曲线的位置关系
【全能解析】依题意,2h=4,所以b=2.义y=six,所以y'=cosx,则
y19-s-9
-乞,所以双曲线C的一条渐近线为y=2x,即2=2,
一数学·临考抑题卷A·答22一