第四单元比例 (单元测试)- 2023-2024学年六年级下册数学人教版
一、单选题
1.下面各组中的两种量成正比例关系的是( )。
A.小温看一本300页的书,平均每天看的页数与天数。
B.冰墩墩的单价一定,总价与数量。
C.冬奥雪裯运动的路程一定,滑行的速度与时间。
D.新能源汽车的电量一定,消耗的电和剩余电量。
2.甲与乙是成反比例的量,如果甲增加25%,乙就会( )。
A.增加25% B.减少25% C.增加20% D.减少20%
3.下面每个选项中的两种量,成反比例关系的是( )。
A.小刚的体重和他的年龄
B.每月收入一定,每月支出的钱数和剩余的钱数
C.圆柱的体积一定,它的底面积和高
D.每包书的册数一定,书的总册数和包数
4.下面能与1.4:0.2组成比例的是( )
A.7:2 B.2:7 C.7:1 D.1:7
5.一个长方形按4:1放大后,得到的图形与原图形比较,下列说法中正确的是( )
A.周长扩大16倍 B.周长缩小16倍
C.面积扩大16倍 D.面积缩小16倍
6.如图,用纸板盖住A,B两根木条的一端,根据露出的部分推断,两根木条相比,( )
A.A根长 B.B根长 C.一样长 D.无法确定
二、判断题
7.六(1)班的出勤率一定,出勤人数与全班总人数成正比例。( )
8.如果ab=cd(a,b,c,d均不为0),那么a:b=c:d一定不成立。 ( )
9.比例尺一定,实际距离扩大到原来的5倍,图上距离也扩大到原来的5倍。( )
10.一种零件长5毫米,画在图纸上长10厘米,这幅图的比例尺是2:1。( )
11.在一幅比例尺是1:200000地图上,量得甲、乙两地的图上距离是b厘米,甲、乙两地的实际距离是2b千米。( )
三、填空题
12.印江到铜仁大约150千米,在一幅地图上,量得两地之间的距离是5厘米。这幅地图的数值比例尺是 。线段比例尺是 。
13.在比例尺1:60000的地图上,量得甲、乙两地的距离是2.5cm,两地的实际距离是 km。
14.花园小学校园长120米.宽50米,在平面图上用5厘米的线段表示校园的宽,该图的比例尺是 ,平面图上的长应画 厘米.
15.如果3a=4b(a、b都不为0),那么a和b成 比例。当b=0.6时,a= 。
16.在一个比例中,两个外项的积是0.6,其中一个内项是3,另一个内项是 。
17.m∶n=a.当a一定时,m和n成 比例;当n一定时,m和a成 比例;当m一定时,n和a 比例.
18.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1∶4000的平面图上,长应画 宽应画
19.小智和小慧比赛爬楼梯,当小智爬到第5层时,小慧爬到第4层,照这样的速度,当小智爬到第21层时,小慧爬到第 层。
四、计算题
20.解比例。
(1)x: =0.6:0.2
(2) : =x:48
(3) =
21.解下列方程
① M:3=24:4
② × ﹣x= .
五、解决问题
22.货运公司运送一批物资,计划用4辆货车运,39次才可以运完。在新冠肺炎疫情期间,因急用物资,改用13辆同样的货车运,现在几次可以运完?(用比例知识解答)
23.电厂平均每天的用煤量一定,购进煤的总量与用煤天数。
24.宏达书店购进30本《格林童话》,花了192元,由于供不应求,老板决定再购进80本,还需要多少元
25.小明看一本故事书,已看的页数和未看的页数之比是3:5,他已看了45页,这本故事书一共有多少页?(用比例解)
26.小明一家三口开车去北京560km外的爷爷家。汽车每100km耗油8L,按照这个耗油量,出发时加满60L汽油,中途不加油能达到爷爷家嘛?
答案解析部分
1.【答案】B
【解析】【解答】解:总价÷数量=单价(一定),
冰墩墩的单价一定,总价与数量成正比例关系。
故答案为:B。
【分析】正比例的判断方法:相关联,能变化,商一定。
2.【答案】D
【解析】【解答】解:A项:甲×(1+25%)×乙×(1+25%)=甲×乙×1.5625,原题干说法错误;
B项:甲×(1+25%)×乙×(1-25%)=甲×乙×0.9375,原题干说法错误;
C项:甲×(1+25%)×乙×(1+20%)=甲×乙×1.5,原题干说法错误;
D项:甲×(1+25%)×乙×(1-20%)=甲×乙,原题干说法正确。
故答案为:D。
【分析】如果甲与乙是成反比例的量,那么甲×乙的积是一定的,甲增加25%就是甲×(1+25%),将选项中的描述代入,运算之后依然是甲×乙即可。
3.【答案】C
【解析】【解答】解:A项中,小刚的体重和他的年龄不成比例关系;
B项中,每月收入一定,每月支出的钱数和剩余的钱数不成比例关系;
C项中,圆柱的体积一定,它的底面积和高成反比例关系;
D项中,每包书的册数一定,书的总册数和包数成正比例关系。
故答案为:C。
【分析】若xy=k(k为常数,x,y≠0),那么x和y成反比例关系。
4.【答案】C
【解析】【解答】解:1.4×1=1.4,0.2×7=1.4,所以1.4:0.2=7:1。
故答案为:C。
【分析】比例的基本性质:在比例里,两个内项积等于两个外项积。
5.【答案】C
【解析】【解答】一个长方形按4:1放大后,得到的图形与原图形比较面积扩大16倍;
【分析】长方形按4:1放大,则其长和宽分别扩大四倍,即其面积扩大4×4=16倍,据此解答即可。
故选:C
6.【答案】A
【解析】【解答】解:设A长x,B长y,
可得:
x= y,
则x:y= : =4:3,
即A木条长.
故选:A.
【分析】用纸板盖住A、B两根木条的一端,由图可知,A露出的 与B露出的全长的 长度相等,设A长x,B长y,根据分数乘法的意义可知, x= y,根据比例的基本性质可知,x:y= : =4:3,即A木条长.
7.【答案】正确
【解析】【解答】出勤率=出勤的人数÷全班的总人数,出勤率一定, 出勤人数与全班总人数成正比例。
故答案为:正确。
【分析】两数相除商一定,则两数成正比例;两数相乘积一定,则两数成反比例。本题中出勤率=出勤的人数÷全班的总人数,根据题意即可得出答案。
8.【答案】正确
【解析】【解答】解:如果ab=cd(a,b,c,d均不为0),那么a:c=d:b一定成立,或者a:d=c:b一定成立,a:b=c:d一定不成立。
故答案为:正确。
【分析】比例的基本性质:比例的外项之积等于比例的内项之积。
9.【答案】正确
【解析】【解答】解:比例尺一定,实际距离扩大到原来的5倍,图上距离也扩大到原来的5倍。原题说法正确。
故答案为:正确。
【分析】比例尺一定,实际距离和图上距离成正比例,因此实际距离和图上距离扩大的倍数相同。
10.【答案】错误
【解析】【解答】解:10厘米=100毫米
100÷5=20:1
故答案为:错误。
【分析】先要单位换算,比例尺=图上距离÷实际距离。
11.【答案】正确
【解析】【解答】解:实际距离=b÷(1:200000)
=b×200000
=200000b(cm)
=2b千米
所以甲、乙两地的实际距离是2b千米,说法正确。
故答案为:正确。
【分析】比例尺=图上距离:实际距离,所以实际距离=图上距离÷比例尺,代入数值计算即可,注意将厘米化成千米。
12.【答案】1∶3000000;
【解析】【解答】解:数值比例尺:150千米=15000000厘米
5:15000000=1:3000000;
线段比例尺:150÷5=30(千米)
;
故答案为:1:3000000;。
【分析】根据比例尺=图上距离:实际距离计算出数值比例尺;用实际距离除以图上距离求出图上1厘米可以表示实际距离多少千米,再画线段比例尺即可。
13.【答案】1.5
【解析】【解答】解:2.5÷=150000cm=1.5km,所以两地的实际距离是1.5km。
故答案为:1.5。
【分析】实际距离=图上距离÷比例尺,然后进行单位换算即可。
14.【答案】1:1000;12
【解析】【解答】解:50米=5000厘米,
5:5000=1:1000,
120米=12000厘米,
12000× =12(厘米),
答:该图的比例尺为1:1000,平面图上的长应画24厘米.
故答案为:1:1000,12.
【分析】要求比例尺,根据比例尺的含义即可得出;求图上距离,根据“实际距离×比例尺=图上距离”列式解答即可.此类题做题时应根据图上距离、实际距离和比例尺三者之间的关系进行列式解答.
15.【答案】正;0.8
【解析】【解答】由3a=4b,可得,a:b的比值一定,所以a和b成正比例 ,当b=0.6时,a=(4×0.6)÷3=0.8。
故答案为:正,0.8。
【分析】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系;a=4b÷3。
16.【答案】0.2
【解析】【解答】设另一个内项为x。
3x=0.6
3x÷3=0.6÷3
x=0.2
故答案为:0.2
【分析】比例的两个内项的积等于两个外项的积,这是比例的基本性质,据此解答。
17.【答案】正;正;反
【解析】【解答】解:因为m:n=a,当a一定时,m和n的比值一定,所以当a一定时,m和n成正比例;当n一定时,m:a=n(一定),m和a的比值一定,所以当n一定时,m和a成正比例;当m一定时,a×n=m(一定),n和a的积一定,所以m当一定时,n和a成反比例。
故答案为:正,正,反。
【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的商(比值)一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例,本题中当a一定时,m和n的比值一定,当n一定时,m:a=n(一定),m和a的比值一定,当m一定时,a×n=m(一定),n和a的积一定,据此即可解答此题。
18.【答案】3;2
【解析】【解答】120米=12000厘米,80米=8000厘米,长:12000×=3(厘米),宽:8000×=2(厘米).
故答案为:3;2
【分析】先把实际长度都换算成厘米,然后用实际长度除以比例尺即可求出图上的长度,由此分别计算图上的长和宽即可.
19.【答案】16
【解析】【解答】解:5-1=4(层),4-1=3(层),21-1=20(层),设小慧爬了x层,那么4:3=20:x,解得x=15,所以小慧爬到第15+1=16层。
故答案为:16。
【分析】爬的层数=爬到的层数-1;
本题可以设小慧爬了x层,其中存在的等量关系是:原来小智爬的层数:原来小慧爬的层数=现在小智爬的层数:现在小慧爬的层数,所以小慧爬到的层数=小慧爬的层数+1,据此作答即可。
20.【答案】(1) x:=0.6:0.2
解:0.2x=0.6×
x=0.5÷0.2
x=2.5
(2) :=x:48
解:x=48×
x=8÷
x=56
(3) =
解: 13x=15×2.6
x=15×2.6÷13
x=3
【解析】【分析】解比例时要根据比例的基本性质把比例写成两个内项积等于两个外项积的形式,然后根据等式的性质求出未知数的值。
21.【答案】解:
① M:3=24:4
M×4=3×24
M=72
M =72
M=72×
M=27
② × ﹣x=
﹣x=
﹣x+x= +x
= +x
= +x
=x
x=
【解析】【分析】①先根据比例的基本性质把原式转化为方程,再根据等式的性质,在方程的两边同时除以 来解;②先计算 × ,再根据等式的性质在方程的两边先同时加上x,再同时减去6.5,再同时减去 来计算.
22.【答案】解:设现在x次可以运完。
4×39=13x
13x=156
x=12
答:现在12次可以运完。
【解析】【分析】本题可以设现在x次可以运完,题中存在的比例关系是:计划用货车运的辆数×计划运完用的次数=实际用货车运的辆数×实际运完用的次数,据此代入数据和字母作答即可。
23.【答案】解:购进煤的总量÷用煤的天数=平均每天用煤量,购进煤的总量与用煤天数的商一定,二者成正比例.
【解析】【分析】根据数量关系判断购进煤的总量与用煤天数的商一定还是积一定,如果商一定就成正比例,如果积一定就成反比例,否则不成比例.
24.【答案】解:设还需要x元。 = x=512
【解析】【解答】解:设还需要x元。
30x=80×192
x=80×192÷30
x=512
答:还需要512元。
【分析】花的钱数÷本数=每本的钱数,花的钱数和本数成正比例。设出未知数,根据每本的钱数不变列出比例,解比例求出还需要的钱数即可。
25.【答案】解:设未看的页数是x页。
45:x=3:5
3x=45×5
3x=225
x=75
45+75=120(页)
答:这本故事书一共有120页。
【解析】【分析】设未看的页数是x页。根据已看的页数:未看的页数=3:5,列比例方程,求出未看的页数,再加上已看的页数就是总页数。
26.【答案】解:560÷100×8
=5.6×8
=44.8(L)
44.8L<60L,所以中途不加油能到达。
答:出发时加满60L汽油,中途不加油能达到爷爷家。
【解析】【分析】用总路程除以100求出到爷爷家需要耗油几个8L,再乘8求出到爷爷家耗油多少L,最后与60L比较即可。