辽宁省沈阳市期末模拟测试卷(试题)2023-2024学年数学五年级下册北师大版(含解析)

文档属性

名称 辽宁省沈阳市期末模拟测试卷(试题)2023-2024学年数学五年级下册北师大版(含解析)
格式 docx
文件大小 596.6KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2024-06-11 08:31:36

图片预览

文档简介

中小学教育资源及组卷应用平台
辽宁省沈阳市期末模拟测试卷(试题)2023-2024学年数学五年级下册北师大版
一、选择题
1.如果△代表一个不为0的自然数,那么得数最大的式子是( )。
A.△÷ B.△× C.÷△ D.△÷2
2.一本数学书的长为21厘米,宽为15厘米,高为0.8厘米。现需将一批数学书装入纸箱内打包,纸箱内侧的长为21厘米,宽为30厘米,高为4厘米。这个纸箱最多能放( )本数学书。
A.16 B.14 C.12 D.10
3.将6个棱长是5cm的正方体纸箱堆放到墙角处(如图),露在外面的面积是( )cm2。
A.250 B.300 C.325 D.375
4.下面是张叔叔家和李叔叔家去年上半年用电情况统计图。张叔叔和李叔叔去年上半年用电量相差最小的是( )。
张叔叔家和李叔叔家去年上半年用电情况统计图
A.一月 B.二月 C.三月 D.四月
5.工程队要铺设一条管道,3天铺了这条管道总长的,按照这样的速度,这个工程队铺完这条管道需要( )天。
A. B. C. D.
6.淘气在笑笑的西偏南60°的方向,笑笑在淘气的( )方向。
A.南偏西30° B.南偏西60° C.东偏北30° D.东偏北60°
二、填空题
7.填上适当的单位。
一粒花生的体积约是1( ) 一瓶矿泉水的容积约是500( )
8.将下图折成一个正方体,数字4对面的数字是( )。
9.根据下面的信息写出等量关系。
(1)今年小明12岁,是妈妈年龄的。( )
(2)一只蜂鸟重21g,一只麻雀的体重减少1g,刚好是这只蜂鸟的50倍。( )
10.的是( )kg。( )元的是20元。
11.下图是一个长方体纸盒的展开图,这个纸盒的体积是( ),最小的一个面的面积是( )。
12.根据下边的统计图回答问题。

(1)两个车间( )月份的用煤量相差最大。
(2)第二车间这五个月的用煤量呈( )趋势。
(3)第一车间4月份的用煤量是第二车间的( )
三、判断题
13.一瓶饮料,妈妈喝了,小明喝了剩下饮料的,他俩喝的一样的。( )
14.条形统计图能清楚地表示出每个项目的具体数目,折线统计图能清楚地反映事物的变化情况。( )
15.一种弹力球从1米高的地方自由下落,每次反弹的高度是下落高度的,第2次的反弹高度是0.81米。( )
16.用3个棱长是4cm的正方体拼成一个长方体,表面积减少了32cm2。( )
17.一个长方体的底面积不变,高扩大到原来的3倍,体积也扩大到原来的3倍。( )
四、计算题
18.直接写出得数。



19.解方程。
4x+12x=96 5.2x-x=8.4
20.计算下面图形的表面积和体积。
21.仔细算一算,怎样简便就怎样计算。

五、解答题
22.甲、乙两队合修一段2800m长的公路。两队同时从两头开工。已知甲队平均每天修160m,乙队平均每天修120m,几天后才能修完这条公路?(列方程解答)
23.一个工程队安装一段网线,时安装了全部网线的。按照这样的速度,安装完这段网线一共需要多少长时间?
24.课间十分钟,五(3)班学生玩起了好玩的游戏,有的学生玩“汉字拼写达人”,有的学生在玩“成语接龙”,其余的学生在玩“你画我猜”。
(1)玩“你画我猜”的学生人数占五(3)班总人数的几分之几?
(2)已知五(3)班有40名学生,玩“你画我猜”的有多少名学生?
25.有5块长方体形状的肥皂,量得每块肥皂的长是10cm,宽是6cm,高是2cm。如果把这5块肥皂用包装纸包在一起,怎样包装最节省包装纸?至少需要多少平方厘米的包装纸?(接口处忽略不计)
26.把一个所有棱长之和为144厘米的正方体实心铁块熔铸成一个长为9厘米,宽为6厘米的长方体实心铁块,这个长方体实心铁块的高是多少厘米?
27.下面是依依和苗苗在2022年春季运动会前星期一到星期五跳绳训练的统计表。
(1)根据上表完成下面的复式折线统计图。
(2)两人的跳绳训练情况最大相差( )下,有( )天苗苗跳的次数少于依依跳的次数。
(3)从总体上看,依依跳绳的次数呈( )趋势。(填“上升”或“下降”)
参考答案:
1.A
【分析】△代表一个不为0的自然数,我们可以假设△为一个具体的自然数,假设△为1,代入四个算式算出结果,并比较大小即可。
【详解】由分析得:
假设△为1,则:
A.△÷=1÷=
B.△×=1×=
C.÷△=÷1=
D.△÷2=1÷2=
因为 ,所以得数最大的式子是 △÷ 。
故答案为:A
【点睛】本题考查分数乘除法,也可以根据“一个数(不为0)乘小于1的数,积就小于这个数;一个数(不为0)除以小于1的数,商就大于这个数”这个规律去判断。
2.D
【分析】根据题意可知,沿纸箱的长把数学书长着放一本,沿纸箱的宽可以放2本,沿纸箱的高可以放4÷0.8=5层,然后根据乘法的意义来解答。
【详解】21÷21×(30÷15)×(4÷0.8)
=1×2×5
=10(本)
故答案为:D
【点睛】此题考查的目的是理解掌握“包含”除法的意义、长方体体积公式的应用。
3.B
【分析】观察图形可知,从上面看到的是4个正方形面,从前面看到是4个正方形面,从右面看到的是4个正方形面,把从上面、右面、前面看到的面相加,可算出总共露出来多少个小正方形,再根据正方形面积公式:S=a×a,求出1个正方形的面积,最后乘正方形的个数即可。
【详解】露出来的正方形总个数为:
4+4+4
=8+4
=12(个)
1个正方形面积为:
5×5=25(cm2)
露在外面的面积是:
25×12=300(cm2)
故答案为:B
【点睛】本题解题的关键是正确数出正方体纸箱露在外面的面有几个,再根据正方形的面积公式解决问题。
4.C
【分析】实线代表张叔叔家用电量,虚线代表李叔叔家用电量,通过对该统计图的分析,看哪个月实线和虚线最靠近,即哪个月两家的用电量相差最小。
【详解】通过对该统计图的分析,三月份时张叔叔和李叔叔家表示用电量的两条线重合了,所以这个月他们两家用电量相差最小。
故答案为:C
【点睛】此题主要考查了对复式折线统计图的掌握,要能够根据统计图提供的信息,解决有关实际问题。
5.B
【分析】把这条管道的全长看作单位“1”,根据已知一个数的几分之几是多少,求这个数,用除法解答即可。
【详解】已知已经修了3天,并且知道3天对应的分率是,则按照这样的速度,这个工程队铺完这条管道需要天数为:
3÷=(天)
故答案为:B
【点睛】此题属于基本的分数除法应用题,关键是确定单位“1”,找到具体数值和其对应的分率,用除法计算求出单位“1”。
6.D
【分析】物体的位置是相对的,对于两个物体来说,分别以自身为观测点,则它们的方向相反,距离和角度是不变的,据此解答即可。
【详解】淘气在笑笑的西偏南60°的方向,笑笑在淘气的东偏北60°方向。
故答案为:D
【点睛】解答此题的主要依据是:物体位置的相对性。
7. 立方厘米/cm3 毫升/mL
【分析】根据生活经验以及对容积单位、体积单位和数据大小的认识,结合实际情况可知:计量一粒花生的体积用“立方厘米”作单位,计量一瓶矿泉水的容积用“毫升”作单位,据此解答即可。
【详解】一粒花生的体积约是1立方厘米;
一瓶矿泉水的容积约500毫升。
【点睛】此题考查根据情景选择合适的计量单位,要注意联系生活实际,根据计量单位和数据的大小,灵活地选择。
8.2
【分析】根据正方体展开图的特征,属于“1-4-1”型,折成正方体后,数字1对面是数字5;数字2对面是数字4;数字3对面是数字6,据此解答。
【详解】根据分析可知,将下图折成一个正方体,数字4对面的数字是2。
【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形。
9.(1)妈妈的体重×=今年小明的体重
(2)蜂鸟的体重×50-1=麻雀的体重
【分析】(1)把妈妈的年龄看作单位“1”,小明的年龄是妈妈年龄的,今年小明是12岁;即妈妈的年龄×=今年小明的年龄,据此解答;
(2)一只麻雀的体积减去1g,刚好是蜂鸟的50倍,即蜂鸟的体重×50-1=麻雀的体重,据此解答。
【详解】(1)今年小明12岁,是妈妈年龄的。妈妈的体重×=今年小明的体重。
(2)一只蜂鸟重21g,一只麻雀的体重减少1g,刚好是这只蜂鸟的50倍。蜂鸟的体重×50-1g=麻雀的体重。
【点睛】解答本题的关键是弄清楚它们之间的关系,再根据它们之间的关系写成等量关系。
10. 4 80
【分析】先把看作单位“1”,根据分数乘法的意义:求一个数的几分之几是多少用乘法计算,即6kg乘即可求出;根据已知一个数的几分之几是多少,求这个数,用除法解答,要求多少元的是20元,用20除以即可。
【详解】6×=4(kg)
20÷
=20×4
=80(元)
的是4kg。80元的是20元。
【点睛】此题重在区分分数在具体的题目中的区别:在具体的题目中,带单位是一个具体的数,不带单位是把某一个数量看单位“1”,是它的几分之几。
11. 3.75 1.5
【分析】由于一个长方体的长、宽、高的数不相同,根据图可知,这个长方体的长是2.5cm,宽是1.5cm,高是1cm,根据长方体的体积=长×宽×高,把数代入即可求出这个纸盒的体积;最小的一个面是长方形,这个面是由长方体的宽1.5cm,和高1cm组成的长方形,根据长方形的面积公式:用1.5×1即可求解。
【详解】由分析可知:
2.5×1.5×1=3.75(cm3)
1.5×1=1.5(cm2)
这个纸盒的体积是3.75cm3,最小的一个面的面积是1.5cm2。
【点睛】本题主要考查长方体的展开图以及长方体的体积公式,关键找出长方体的长、宽、高是解题的关键。
12.(1)1
(2)上升
(3)
【分析】(1)观察统计图,找出两车间哪个月距离相差越大,那个月用煤相差最大;
(2)观察统计图,第二车间用煤呈什么趋势,是看用煤量是增加了还是下降了,如果增加就是上升趋势,据此即可填空;
(3)用第一车间4月份用煤量÷第二车间4月份用煤量,即可解答。
【详解】(1)两个车间1月份的用煤量相差最大。
(2)第二车间这五个月的用煤量程上升趋势。
(3)60÷70=
第一车间4月份的用煤量是第二车间的。
【点睛】本题考查复式折线统计图的应用,并且考查根据统计图提供的信息解答问题的能力。
13.×
【分析】根据题意可知,把这瓶饮料看作单位“1”,妈妈喝了,还剩下1-=,小明喝了剩下的,即小明相当于喝了这瓶饮料的×=,由此即可比较。
【详解】妈妈喝了:
小明喝了:(1-)×
=×


所以他俩喝的不一样多。
原题干说法错误。
故答案为:×
【点睛】本题考查分数比较大小的方法;根据异分母分数比较大小的方法进行解答。
14.√
【分析】根据条形统计图和折线统计图的特点来判断即可。
【详解】条形统计图能清楚地表示出每个项目的具体数目,折线统计图能清楚地反映事物的变化情况。原题说法正确。
故答案为:√
【点睛】此题考查了条形统计图和折线统计图的特点,作图时要学会灵活选择。
15.√
【分析】先求出第一次反弹的高度,第一次弹起的高度是下落高度的,即1×=(米),第二次反弹的高度是第二下落的高度米的,用×计算即可。
【详解】1××=0.81(米)
故答案为:√。
【点睛】求一个数的几分之几是多少用乘法计算。
16.×
【分析】根据题意可知,3个棱长是4cm的正方体拼成一个长方体,减少了4个小正方形的面,根据正方形面积公式:边长×边长,求出一个小正方形的面积,再乘4,就是减少的表面积,再判断。
【详解】4×4×4
=16×4
=64(cm2)
用3个棱长是4cm的正方体拼成一个长方体,表面积减少了64cm2。
原题干用3个棱长是4cm的正方体拼成一个长方体,表面积减少了32cm2,说法错误。
故答案为:×
【点睛】本题考查立体图形的切拼,关键是明确3个正方体拼成一个长方体,表面积减少4个正方形的面。
17.√
【分析】根据长方体体积公式:长方体体积=底面积×高;一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;由此解答。
【详解】根据分析可知,一个长方体的底面积不变,高扩大到原来的3倍,体积也扩大到原来的3倍。原题干说法正确。
故答案为:√
【点睛】本题考查长方体体积公式的应用,以及因数与积的变化规律。
18.;0;;12
;;1;
;;;
【详解】略
19.x=6;x=2;x=
【分析】(1)先化简方程,4x+12x得16x,再根据等式的性质,等式两边同时除以16即可;
(2)先化简方程,5.2x-x得4.2x,再根据等式的性质,等式两边同时除以4.2即可;
(3)根据等式的性质,等式两边同时乘即可。
【详解】(1)4x+12x=96
解:16x=96
x=6
(2)5.2x-x=8.4
解:4.2x=8.4
x=2
(3)
解:
x=
20.508平方厘米;700立方厘米
【分析】由图可知:将切去部分的底面平移到上面,切去部分的左面平移到右面,则立体图形的表面积=未切前大长方体的表面积-切去部分前后面面积和;立体图形的体积=未切前的体积-切去部分体积;根据长方形面积公式:S=ab,长方体表面积公式:S=(ab+ah+bh)×2,长方体体积公式:V=abh;据此代入数据解答。
【详解】表面积:(12×7+12×10+7×10)×2-4×5×2
=(84+120+70)×2-40
=274×2-40
=548-40
=508(平方厘米)
体积:12×7×10-4×7×5
=840-140
=700(立方厘米)
21.;1
【分析】(1)先通分,再按照运算顺序计算即可;
(2)利用加法交换律和结合律进行简算即可。
【详解】



22.10天
【分析】设x天后才能修完这条公路,根据等量关系:甲队平均每天修的米数×修的天数+乙队平均每天修的米数×修的天数=公路的总长,列方程计算即可。
【详解】解设:x天后能修完这条公路。
160x+120x=2800
280x=2800
x=10
答:10天后才能修完这条公路。
【点睛】本题主要考查了列方程解应用题,关键是找等量关系。
23.2小时
【分析】用除以时,求出每小时完成几分之几,再用总工作量1除以每小时完成的分率,可以计算出安装完这段网线一共需要多少长时间。
【详解】
=1÷
=2(小时)
答:安装完这段网线一共需要2小时。
【点睛】本题考查分数应用题的解题方法,根据分数除法的意义,列式计算。
24.(1)
(2)15名
【分析】(1)把全班总人数看作单位“1”,用1减去玩“汉字拼写达人”和“成语接龙”的学生所占的分率,即可求出玩“你画我猜”的学生人数占五(3)班总人数的几分之几。
(2)求一个数的几分之几是多少,用乘法计算,据此用40乘玩“你画我猜”的学生所占的分率即可解答。
【详解】(1)1--=
答:玩“你画我猜”的学生人数占五(3)班总人数的。
(2)40×=15(名)
答:玩“你画我猜”的有15名学生。
【点睛】求一个数的几分之几是多少,用乘法计算。据此求出玩“你画我猜”的学生所占的分率是解题的关键。
25.440平方厘米
【分析】根据题意可知,要想最节省包装纸,也就是肥皂的最大面重合摞起来,拼成一个长10厘米,宽6厘米,高(2×5)厘米的长方体,根据长方体的表面积公式:(长×宽+长×高+宽×高)×2,把数据代入公式解答。
【详解】2×5=10(厘米)
(10×6+10×10+6×10)×2
=(60+100+60)×2
=220×2
=440(平方厘米)
答:将肥皂的最大面重合摞起来包装最省包装纸,至少需要440平方厘米的包装纸。
【点睛】此题主要考查长方体表面积公式的灵活运用,关键是熟记公式。
26.32厘米
【分析】根据体积的意义可知,把正方体铁块熔铸成长方体铁块,体积不变,根据正方体的棱长总和=棱长×12,那么棱长=棱长总和÷12,据此求出正方体的棱长,再根据正方体的体积公式:V=a3,长方体的体积公式:V=abh,那么h=V÷ab,把数据代入公式解答。
【详解】144÷12=12(厘米)
12×12×12÷(9×6)
=144×12÷54
=1728÷54
=32(厘米)
答:这个长方体实心铁块的高是32厘米。
【点睛】此题主要考查正方体的棱长总和公式、体积公式、长方体的体积公式的灵活运用,关键是熟记公式。
27.(1)见详解
(2)28;3
(3)上升
【分析】(1)根据两人的跳绳次数描出各点,然后用不同的折线顺次连接各点,并在点上标出数据。
(2)从统计图中可以看出:两人在星期五跳绳次数相差最大,把这一天两人的次数相减即可;苗苗在星期三、星期四和星期五这3天跳的次数少于依依跳的次数。
(3)依依跳绳的次数不断增加,呈上升趋势。
【详解】(1)
(2)110-82=28(次),两人的跳绳训练情况最大相差28下;有3天苗苗跳的次数少于依依跳的次数。
(3)从总体上看,依依跳绳的次数呈上升趋势。
【点睛】本题考查复式统计表和复式折线统计图的综合应用。读懂统计图表,找出有用的信息是解题的关键。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录