(共24张PPT)
24.2 直线和圆的位置关系
第2课时 切线的判定与性质
【学习目标】
1.掌握切线的判定定理,能判定一条直线是否为圆的切线.
2.掌握切线的性质定理.
3.能综合运用圆的切线的判定和性质解决问题.
【学习重点】
探索圆的切线的判定和性质,并能运用.
【学习难点】
探索圆的切线的判定方法.
d
r
相离
.A
d
r
相切
L
L
H.
.D
.O
r
d
相交
.
C
.O
.B
.
E
.F
O
1、直线与圆相离 d>r
3、直线与圆相交 d2、直线与圆相切 d=r
L
r
r
r
转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?
都是沿切线方向飞出的.
生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.
情境引入
O
A
B
C
问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?
观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系
(2)二者位置有什么关系?为什么?
切线的判定定理
O
经过半径的外端并且垂直于这条半径的直线是圆的切线.
OA为⊙O的半径
BC ⊥ OA于A
BC为⊙O的切线
O
A
B
C
切线的判定定理
应用格式
O
要点归纳
下列各直线是不是圆的切线?如果不是,请说明为什么?
O.
A
O.
A
B
A
O
(1)
(2)
(3)
(1)不是,因为没有垂直.
(2),(3)不是,因为没有经过半径的外端点A.
在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.
判一判
判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;
2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;
3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
l
A
l
O
l
r
d
要点归纳
判断下列命题是否正确.
⑴ 经过半径外端的直线是圆的切线. ( )
⑵ 垂直于半径的直线是圆的切线. ( )
⑶ 过直径的外端并且垂直于这条直径的直线是圆的切线. ( )
⑷ 和圆只有一个公共点的直线是圆的切线. ( )
⑸ 过直径一端点且垂直于直径的直线是圆的切线. ( )
×
×
√
√
√
当堂练习
例1:如图,∠ABC=45°,直线AB是☉O上的直径,点A在圓上,且AB=AC.
求证:AC是☉O的切线.
解析:直线AC经过半径的一端,因此只要证OA垂直于AC即可.
证明:∵AB=AC,∠ABC=45°,
∴∠ACB=∠ABC=45°.
∴∠BAC=180°-∠ABC-ACB=90°.
∵AB是☉O的直径,
∴ AC是☉O的切线.
A
O
C
B
典例精析
例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.
O
B
A
C
分析:由于AB过⊙O上的点C,所以连接OC,只要证明AB⊥OC即可.
证明:连接OC(如图).
∵ OA=OB,CA=CB,
∴ AB⊥OC.
∵ OC是⊙O的半径,
∴ AB是⊙O的切线.
例3.已知:△ABC内接于☉O,过点A作直线EF.
(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是: _________ ;
(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.
BA⊥EF
A
F
E
O
A
F
E
O
B
C
B
C
图1
图2
证明:连接AO并延长交☉O于D,连接CD,则AD为☉O的直径.
∴ ∠D+ ∠DAC=90 °,
∵ ∠D= ∠B,
∠CAE= ∠B,
∴ ∠D= ∠CAE,
∴ ∠DAC+ ∠EAC=90°,
∴EF是☉O的切线.
A
F
E
O
B
C
图2
D
如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB
求证:直线AB是⊙O的切线.
C
B
A
O
如图,OA=OB=5,AB=8, ⊙O的直径为6.
求证:直线AB是⊙O的切线.
C
B
A
O
对比思考
作垂直
连接
方法归纳
(1) 有交点,连半径,证垂直;
(2) 无交点,作垂直,证半径.
证切线时辅助线的添加方法
例1
例2
要点归纳
思考:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?
A
l
O
∵直线l是⊙O 的切线,A是切点,
∴直线l ⊥OA.
切线的性质定理
切线性质
圆的切线垂直于经过切点的半径.
应用格式
如图, ⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?
O
P
B
A
解:连接OB,则∠OBP=90°.
设⊙O的半径为r,则OA=OB=r,
OP=OA+PA=2+r.
在Rt△OBP中,
OB2+PB2=PO2,即r2+42=(2+r)2.
解得 r=3,
即⊙O的半径为3.
有切线时常用辅助线添加方法
见切点,连半径,得垂直.
利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.
方法总结
如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E.求证:AC 是⊙O 的切线.
B
O
C
E
A
分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.
F
证明:连接OE ,OA, 过O 作OF ⊥AC.
∵⊙O 与AB 相切于E , ∴OE ⊥ AB.
又∵AB =AC ,O 是BC 的中点.
∴AO 平分∠BAC,
F
B
O
C
E
A
∴OE =OF.
∴OF是⊙O 半径 .
∴AC 是⊙O 的切线.
又OE ⊥AB ,OF⊥AC.
(1) 有交点,连半径,证垂直;
(2) 无交点,作垂直,证半径.
证切线时辅助线的添加方法
例1
例2
有切线时常用辅助线添加方法
见切点,连半径,得垂直.
切线的其他重要结论
(1)经过圆心且垂直于切线的直线必经过切点;
(2)经过切点且垂直于切线的直线必经过圆心.
要点归纳
证明:连接OP.
∵AB=AC,∴∠B=∠C.
∵OB=OP,∴∠B=∠OPB,
∴∠OBP=∠C.
∴OP∥AC.
∵PE⊥AC,
∴PE⊥OP.
∴PE为⊙O的切线.
如图,△ABC中,AB=AC,以AB为直径的⊙O交
边BC于P, PE⊥AC于E.
求证:PE是⊙O的切线.
O
A
B
C
E
P
如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.
证明:连接OM,过点O作ON⊥CD于点N,
∵⊙O与BC相切于点M,
∴OM⊥BC.
又∵ON⊥CD,O为正方形ABCD对角线AC上一点,
∴OM=ON,
∴CD与⊙O相切.
M
N
切线的
判定方法
定义法
数量关系法
判定定理
1个公共点,则相切
d=r,则相切
经过圆的半径的外端且垂直于这条半径的直线是圆的切线.
切线的
性质
证切线时常用辅助线添加方法:
①有公共点,连半径,证垂直;
②无公共点,作垂直,证半径.
有1个公共点
d=r
性质定理
圆的切线垂直于经过切点的半径
有切线时常用辅助线
添加方法:
见切线,连切点,得垂直.
课堂小结