2024年山东省枣庄市中考数学试题(含部分答案)

文档属性

名称 2024年山东省枣庄市中考数学试题(含部分答案)
格式 doc
文件大小 1.6MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2024-06-17 16:47:57

图片预览

文档简介

2024年山东枣庄中考数学试题及答案
本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.
1. 下列实数中,平方最大的数是( )
A. 3 B. C. D.
2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形是( )
A. B. C. D.
3. 年山东省扎实落实民生实事,全年新增城乡公益性岗位万个,将万用科学记数法表示应为( )
A. B. C. D.
4. 下列几何体中,主视图是如图的是( )
A. B. C. D.
5. 下列运算正确的是( )
A. B.
C. D.
6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )
A. 200 B. 300 C. 400 D. 500
7. 如图,已知,,是正边形三条边,在同一平面内,以为边在该正边形的外部作正方形.若,则的值为( )
A. 12 B. 10 C. 8 D. 6
8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( )
A B. C. D.
9. 如图,点为的对角线上一点,,,连接并延长至点,使得,连接,则为( )
A. B. 3 C. D. 4
10. 根据以下对话,
给出下列三个结论:
①1班学生的最高身高为;
②1班学生的最低身高小于;
③2班学生的最高身高大于或等于.
上述结论中,所有正确结论的序号是( )
A. ①② B. ①③ C. ②③ D. ①②③
二、填空题:本题共6小题,每小题3分,共18分.
11. 因式分解:________.
12. 写出满足不等式组的一个整数解________.
13. 若关于的方程有两个相等的实数根,则的值为________.
14. 如图,是的内接三角形,若,,则________.
15. 如图,已知,以点为圆心,以适当长为半径作弧,分别与、相交于点,;分别以,为圆心,以大于的长为半径作弧,两弧在内部相交于点,作射线.分别以,为圆心,以大于的长为半径作弧,两弧相交于点,,作直线分别与,相交于点,.若,,则到的距离为________.
16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系中,将点中的,分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中,均为正整数.例如,点经过第1次运算得到点,经过第2次运算得到点,以此类推.则点经过2024次运算后得到点________.
三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.
17. (1)计算:;
(2)先化简,再求值:,其中.
18. 【实践课题】测量湖边观测点和湖心岛上鸟类栖息点之间的距离
【实践工具】皮尺、测角仪等测量工具
【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点.测量,两点间的距离以及和,测量三次取平均值,得到数据:米,,.画出示意图,如图
【问题解决】(1)计算,两点间的距离.
(参考数据:,,,,)
【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:
如图2,选择合适的点,,,使得,,在同一条直线上,且,,当,,在同一条直线上时,只需测量即可.
(2)乙小组的方案用到了________.(填写正确答案的序号)
①解直角三角形 ②三角形全等
【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.
19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用表示),并将其分成如下四组:,,,.
下面给出了部分信息:
的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.
根据以上信息解决下列问题:
(1)请补全频数分布直方图;
(2)所抽取学生模型设计成绩的中位数是________分;
(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;
(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按的比例确定这次活动各人的综合成绩.
某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:
模型设计 科技小论文
甲的成绩 94 90
乙的成绩 90 95
通过计算,甲、乙哪位学生的综合成绩更高?
20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数与部分自变量与函数值的对应关系:
1
1 ________
________ ________ 7
(1)求、的值,并补全表格;
(2)结合表格,当图像在的图像上方时,直接写出的取值范围.
21. 如图,在四边形中,,,.以点为圆心,以为半径作交于点,以点为圆心,以为半径作所交于点,连接交于另一点,连接.
(1)求证:为所在圆的切线;
(2)求图中阴影部分面积.(结果保留)
22. 一副三角板分别记作和,其中,,,.作于点,于点,如图1.
(1)求证:;
(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点与点重合记为,点与点重合,将图2中的绕按顺时针方向旋转后,延长交直线于点.
①当时,如图3,求证:四边形为正方形;
②当时,写出线段,,的数量关系,并证明;当时,直接写出线段,,的数量关系.
23. 在平面直角坐标系中,点在二次函数的图像上,记该二次函数图像的对称轴为直线.
(1)求的值;
(2)若点在的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当时,求新的二次函数的最大值与最小值的和;
(3)设的图像与轴交点为,.若,求的取值范围.
参考答案
本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.
【1题答案】
【答案】A
【2题答案】
【答案】D
【3题答案】
【答案】C
【4题答案】
【答案】D
【5题答案】
【答案】D
【6题答案】
【答案】B
【7题答案】
【答案】A
【8题答案】
【答案】C
【9题答案】
【答案】B
【10题答案】
【答案】D
二、填空题:本题共6小题,每小题3分,共18分.
【11题答案】
【答案】
【12题答案】
【答案】(答案不唯一)
【13题答案】
【答案】##
【14题答案】
【答案】##40度
【15题答案】
【答案】
【16题答案】
【答案】
三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.
【17题答案】
【答案】(1) (2)
【18题答案】
【答案】(1),两点间的距离为米;(2)②
【19题答案】
【答案】(1)画图见解析
(2)
(3)人
(4)甲的综合成绩比乙高.
【20题答案】
【答案】(1),补全表格见解析
(2)的取值范围为或;
【21题答案】
【答案】(1)见解析 (2)
【22题答案】
【答案】(1)证明见解析
(2)①证明见解析;②当时,线段,,的数量关系为;当时,线段,,的数量关系为;
【23题答案】
【答案】(1)
(2)新的二次函数的最大值与最小值的和为;
(3)
同课章节目录