19.7 相似三角形的应用 课件1(北京课改版九年级上)

文档属性

名称 19.7 相似三角形的应用 课件1(北京课改版九年级上)
格式 rar
文件大小 328.7KB
资源类型 教案
版本资源 京教版
科目 数学
更新时间 2009-08-21 20:56:00

图片预览

文档简介

课件8张PPT。相似三角形的应用 胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。 小小旅行家:走近金字塔小小考古家: 埃及著名的考古专家穆罕穆德决定重新测量胡夫金字塔的高度.在一个烈日高照的上午.他和儿子小穆罕穆德来到了金字塔脚下,他想考一考年仅14岁的小穆罕穆德.给你一条2米高的木杆,一把皮尺,一面平面镜.你能利用所学知识来测出塔高吗?2米木杆皮尺平面镜ACBDE┐┐如图所示,为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′,比较棒子的影长A′B′与金字塔影长AB,即可近似算出金字塔的高度OB.如果O′B′=1,A′B′=2,AB=274,求金字塔的高度OB. 



即该金字塔高为137米.
(米)解:由于太阳光是平行光线,因此∠OAB=∠O′A′B′.又因为∠ABO=∠A′B′O′=90°.所以 △OAB∽△O′A′B′,OB∶O′B′=AB∶A′B′,OB=
如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.
解: 因为 ∠ADB=∠EDC,
∠ABC=∠ECD=90°,
所以 △ABD∽△ECD,
那么 解得 AB =
==100(米).
答: 两岸间的大致距离为100米.D在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
课堂练习解:设高楼的高度为X米,则
答:楼高36米.课堂小结:一 、相似三角形的应用主要有如下两个方面
1 测高(不能直接使用皮尺或刻度尺量的)
2 测距(不能直接测量的两点间的距离)、测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决 、测距的方法
测量不能到达两点间的距离,常构造相似三角形求解