中小学教育资源及组卷应用平台
小升初分班考专题:04比与比例-2023-2024学年数学六年级下册人教版
一、选择题
1.比的基本性质和下面的规律比较,与( )的知识本质是相同的。
①分数基本性质 ②加法交换律 ③乘法分配律 ④商不变规律
A.①② B.②③ C.③④ D.①④
2.如图,两个圆重叠部分的面积相当于甲面积的,相当于乙面积的,那么甲和乙面积的最简整数比是( )。
A.3∶2 B.2∶3 C.5∶4 D.4∶5
3.高铁票的定价规则是:。如下图是某高铁从A站到G站及中途各停靠点的线路图,,全程票价是600元,刑警发现一名疑犯从D站上车,票价200元,推断疑犯在( )下车。
A.B站 B.C站 C.F站 D.G站
4.一个圆柱侧面展开图是正方形,这个圆柱底面半径与高的比是( )。
A.2π∶1 B.1∶2π C.2∶1 D.1∶2
5.下面说法错误的是( )。
①三角形的面积一定,底和高成反比例
②一个圆的面积和它的半径成正比例
③圆锥的高一定,体积和底面积成正比例
④如果x∶5=6∶y,则x和y成正比例
A.③④ B.②④
C.①② D.①③
6.博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1∶10。这个将军俑的实际高度是( )米。
A.19.6 B.196 C.1.96 D.0.196
二、填空题
7.24÷( )=( )∶24=0.75=( )%=( )折。
8.一种盐水,盐和水按1∶100的比配成,现要配制这种盐水808g,需要盐( )g。
9.判断是否成比例。成什么比例。(填“成正”、“成反”、“不成”)
(1)(a,b,c均不为0)满足,当a一定时,b和c( )比例。
(2)植树总棵数一定,成活棵数和成活率( )比例。
(3)在半个小时内,折千纸鹤的数量与每分钟折千纸鹤的数量( )比例;半小时内,折一个千纸鹤的时间与折千纸鹤的数量( )比例。
10.一个零件长2cm,画在比例尺是5∶1的图纸上长( )cm。
11.把一个三角形按3∶1放大,原来三角形的底是5厘米,高是4厘米,放大后的底是( )厘米,高是( )厘米,面积是( )平方厘米。
12.在一幅比例尺为1∶5000000的地图上,量得西安到延安的距离是6.7厘米,西安到延安的实际距离是( )千米。
三、判断题
13.如果(x、y均不为0),那么。( )
14.一杯盐水,盐占盐水的,盐和水的比是1∶10。( )
15.4分米∶20厘米=40厘米∶20厘米=2厘米。( )
16.比的前项和后项都扩大到原来的5倍,得到一个新的比,这两个比能组成比例。( )
17.大、小两个圆周长的比是3∶2,它们半径的比也是3∶2。( )
四、计算题
18.直接写出得数。
19.解方程。
9∶x=16∶4
0.2∶x=5∶9 4.5∶0.3=x∶0.2
五、解答题
20.用1∶300的比例尺画出的教学楼的占地平面图的长是12厘米,宽是4厘米,那么这幢教学楼的实际占地面积是多少平方米?
21.用边长5分米的方砖铺房间,需要64块,改用边长4分米的方砖,需要多少块?
22.白鹭湖小学绘画社团共有28人,其中男、女生的人数之比为1∶6。该社团有女生多少人?
23.学校组织胡芦丝小器乐比赛。原计划参赛学生中男生占总人数的60%,后来考虑到演出效果,将其中10名男生换成了10名女生,这时男生和女生人数的比是2∶3。参加比赛共有多少名学生?
①根据题意在下面的线段图中表示出男生或女生的信息。
原计划:
调整后:
②列式解决问题。
24.某工厂计划生产1200个零件,前8天加工了240个,照这样计算,完成这项生产任务要用多少天?(用比例解)
25.操作。
(1)画出图形①按3∶1放大后得到的图形②。下图中每个小正方形的边长表示1厘米。
(2)观察放大前后的图形,发现图形①放大后,( )变了,( )没变。
(3)如果以图形②的一条较长的直角边所在直线为轴旋转一周,那么会形成一个( ),这个图形的体积是( )立方厘米。
参考答案:
1.D
【分析】比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变;
商不变规律:被除数和除数扩大几倍或缩小到原来的几分之一(0除外),商不变。
加法交换律:两个数相加,交换加数的位置,和不变;
乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,结果不变。
据此可知,比的前项相当于被除数、分数的分子,比的后项相当于除数、分数的分母,比值相当于除法中的商、分数的分数值,如2∶5==2÷5。所以比的基本性质和分数基本性质、商不变规律的知识本质是相同的。
【详解】根据分析可知,比的基本性质和分数基本性质、商不变规律的知识本质是相同的。所以选①④。
故答案为:D
2.A
【分析】分别将两个圆的面积看作单位“1”,假设重叠部分的面积是1,用重叠部分的面积÷对应分率,分别求出两个圆的面积,两数相除又叫两个数的比,根据比的意义,写出甲乙面积比,化简即可。
【详解】假设重叠部分的面积是1。
(1÷)∶(1÷)
=∶5
=(×2)∶(5×2)
=15∶10
=(15÷5)∶(10÷5)
=3∶2
甲和乙面积的最简整数比是3∶2。
故答案为:A
3.C
【分析】根据实际票价=全程票价×;由此可知,实际乘车里程=实际票价×总里程÷全程票价,求出200元车票可以乘坐的路程,再从D站出发,推断疑犯在哪站下车。
【详解】200×1500÷600
=300000÷600
=500(千米)
D站到E站是200千米;E站到F站是300千米;200+300=500(千米),所以疑犯在F站下车。
铁票的定价规则是:。如下图是某高铁从A站到G站及中途各停靠点的线路图,,全程票价是600元,刑警发现一名疑犯从D站上车,票价200元,推断疑犯在F占下车。
故答案为:C
4.B
【分析】圆柱的侧面展开图的长等于圆柱的底面周长,宽等于圆柱的高,由于这个圆柱的侧面展开是一个正方形,因此圆柱的底面周长与圆柱的高相等;根据圆的周长=2πr,则圆柱的高为2πr,据此得出圆柱的底面半径和高的比。
【详解】圆柱的底面半径为r,
则圆柱的底面周长为:2πr,即圆柱的高为2πr,
圆柱的底面半径和高的比是:r∶2πr=1∶2π
故答案为:B
5.B
【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定还是对应的乘积一定;如果是比值一定,那么成正比例关系;如果是乘积一定,则成反比例关系,据此解答。
【详解】①根据三角形的面积=底×高÷2得,底×高=2×面积,所以当三角形的面积一定,底和高对应的乘积一定,因此三角形的面积一定,底和高成反比例,该选项的说法是正确的,不符合题意;
②一个圆的面积=πr2,即圆的面积÷r2=π,一个圆的面积和它半径的平方对应的比值一定,因此一个圆的面积和它半径的平方成正比例,该选项的说法是错误的,符合题意;
③圆锥的体积=×底面积×高,体积÷底面积=×高,圆锥的高一定,因此体积和底面积的比值一定,体积和底面积成正比例,该选项的说法是正确的,不符合题意;
④根据比例的基本性质,x×y=5×6,即xy=30(一定),因此x和y成反比例,该选项的说法是错误的,符合题意。
因此说法错误的是②④。
故答案为:B
6.C
【分析】根据实际距离=图上距离÷比例尺,代入数据计算即可。
【详解】19.6÷
=19.6×10
=196(厘米)
196厘米=1.96米
这个将军俑的实际高度是1.96米。
故答案为:C
7. 32 18 75 七五
【分析】①根据被除数、除数和商的关系,除数=被除数÷商;②根据除法和比的关系,比的前项相当于被除数,比的后项相当于除数,把除法改写成比的形式,再运用比的基本性质:比的前项和后项同时乘或除以同一个不为0的数,比值不变进行化简;③根据小数化成百分数:把小数点向右移动两位,同时在后面添上百分号;④根据折扣的意义:几折表示现价是原价的百分之几十,据此解答。
【详解】24÷0.75=32
把0.75的小数点向右移动两位,同时在后面添上百分号是75%。
75%表示现价是原价的75%,也就是七五折。
因此24÷32=18∶24=0.75=75%=七五折。
8.8
【分析】盐和水按1∶100的比配成,就是盐有1份,水有这样的100份,整个盐水就是101份,为808g,按比分配每一份就是8g,盐的质量就是8g。
【详解】808÷(1+100)
=808÷101
=8(g)
则需要盐8g。
9.(1)成反
(2)成正
(3) 成正 成反
【分析】两个相关联的量,一个变化,另一个也随着变化,如果x÷y=k(一定),即商一定,x和y成正比例关系;如果xy=k(一定),即积一定,x和y成反比例关系;以上两种情况之外,不成比例关系,据此分析。
【详解】(1),根据商×除数=被除数,可得bc=a,当a一定时,b和c成反比例。
(2)成活棵数÷成活率=总棵数,植树总棵数一定,成活棵数和成活率成正比例。
(3)折千纸鹤的数量÷每分钟折千纸鹤的数量=总时间,在半个小时内,折千纸鹤的数量与每分钟折千纸鹤的数量成正比例;折一个千纸鹤的时间×折千纸鹤的数量=总时间,半小时内,折一个千纸鹤的时间与折千纸鹤的数量成反比例。
10.10
【分析】根据图上距离=实际距离×比例尺,比例尺是5∶1,化为分数为:,据此计算得出答案。
【详解】零件画在比例尺是5∶1的图纸上长:2×5=10(cm)。
11. 15 12 90
【分析】根据图形放大或缩小的意义,一个底5厘米,高4厘米的三角形按3∶1放大后,底和高都扩大到原来的3倍,对应角不变,根据公式:三角形的面积=底×高÷2,即可求出放大后的三角形的面积。
【详解】5×3=15(厘米)
4×3=12(厘米)
15×12÷2=90(平方厘米)
放大后的底是15厘米,高是12厘米,面积是90平方厘米。
12.335
【分析】根据实际距离=图上距离÷比例尺,进行换算即可。
【详解】6.7÷=6.7×5000000=33500000(厘米)=335(千米)
西安到延安的实际距离是335千米。
13.×
【分析】运用比例的性质,把8x=5y改写成比例的形式,使相乘的两个数y和5做比例的内项,那么相乘的另两个数x和8就做比例的外项。
【详解】如果8x=5y,那么x∶y=5∶8,故原题说法错误。
故答案为:×
【点睛】此题考查比例性质的运用,注意:相乘的两个数要做外项,就都做外项,要做内项,就都做内项。
14.√
【分析】盐占盐水的,将盐水看作单位“1”,水占盐水的(1-),两数相除又叫两个数的比,根据比的意义,写出盐和水的对应分率的比,化简即可,即比的前项和后项,同时乘或除以相同的数(0除外),比值不变。
【详解】∶(1-)=∶=(×11)∶(×11)=1∶10
一杯盐水,盐占盐水的,盐和水的比是1∶10,说法正确。
故答案为:√
15.×
【分析】求比值直接用比的前项÷后项,求比值的结果是一个数,不带单位名称,据此分析。
【详解】4分米∶20厘米=40厘米∶20厘米=40÷20=2
故答案为:×
16.√
【分析】比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
表示两个比相等的式子叫做比例。根据比例的意义可知,比值相等的两个比可以组成比例。
【详解】如:8∶5=8÷5=
(8×5)∶(5×5)=40∶25
40∶25=40÷25=
比值相等,则8∶5=40∶25;
所以,比的前项和后项都扩大到原来的5倍,得到一个新的比,这两个比能组成比例。
原题说法正确。
故答案为:√
17.√
【分析】根据圆的周长公式:周长=π×半径×2;因为2π是一个固定值,所以两个圆的周长比就等于相同两个圆的半径比,据此解答。
【详解】根据分析可知,大、小两个圆周长的比是3∶2,它们半径的比也是3∶2。
原题干说法正确。
故答案为:√
18.9.42;;6.2;
;1.9;50.24;0.1256
【解析】略
19.x=2.25;x=10;x=1.5
x=0.36;x=3;x=1
【分析】(1)在比例中,两个内项的乘积等于两个外项的乘积,把比例转化为方程,再利用等式的性质2,方程两边同时除以16求解;
(2)分数形式的比例中,交叉相乘积相等,把比例转化为方程,再利用等式的性质2,方程两边同时除以3.2求解;
(3)在比例中,两个内项的乘积等于两个外项的乘积,把比例转化为方程,再利用等式的性质2,方程两边同时除以4求解;
(4)在比例中,两个内项的乘积等于两个外项的乘积,把比例转化为方程,再利用等式的性质2,方程两边同时除以5求解;
(5)在比例中,两个内项的乘积等于两个外项的乘积,把比例转化为方程,再利用等式的性质2,方程两边同时除以0.3求解;
(6)在比例中,两个内项的乘积等于两个外项的乘积,把比例转化为方程,再利用等式的性质2,方程两边同时除以求解。
【详解】(1)9∶x=16∶4
解:9×4=16×x
36=16x
16x÷16=36÷16
x=2.25
(2)=
解:3.2x=2×16
3.2x=32
3.2x÷3.2=32÷3.2
x=10
(3)21∶x=4∶
解:21×=4×x
6=4x
4x÷4=6÷4
x=1.5
(4) 0.2∶x=5∶9
解:0.2×9=5×x
1.8=5x
5x÷5=1.8÷5
x=0.36
(5) 4.5∶0.3=x∶0.2
解:4.5×0.2=x×0.3
0.9=0.3x
0.3x÷0.3=0.9÷0.3
x=3
(6) ∶=x∶
解:×=x×
=x
x ÷=÷
x=×2
x=1
20.432平方米
【分析】这幢教学楼的实际占地面积=实际的长×实际的宽;根据实际距离=图上距离÷比例尺,分别用12÷和4÷求出实际的长和宽,再把单位换算成米,进而求出实际占地面积。
【详解】12÷
=12×300
=3600(厘米)
3600厘米=36米
4÷
=4×300
=1200(厘米)
1200厘米=12米
36×12=432(平方米)
答:这幢教学楼的实际占地面积是432平方米。
21.100块
【分析】根据题意可知房间的面积一定,方砖的面积=边长×边长,方砖的面积×块数=房间的面积,则方砖的面积和方砖的块数成反比例,由此列式解答即可。
【详解】解:设改用边长4分米的方砖需要x块。
5×5×64=4×4×x
25×64=16x
1600=16x
1600÷16=16x÷16
x=100
答:改用边长4分米的方砖,需要100块。
22.24人
【分析】根据题意,男、女生的人数之比为1∶6,即把男生和女生人数分成1+6=7份,用总人数÷总份数,求出1份是多少,进而求出女生人数。
【详解】1+6=7(份)
28÷7×6
=4×6
=24(人)
答:该社团有女生24人。
23.①图见详解
②50名
【分析】从“其中10名男生换成了10名女生”可知,男生、女生人数都发生了变化,总人数没有变。从“男生占总人数的60%”可知,以总人数为单位“1”,男生先占总人数的60%,调整后,占总人数的,男生减少了10人,这10人就占总人数的。根据已知一个数的百分之几是多少,求这个数用除法计算。用减少的人数÷减少的分率,即可求出参加比赛共有多少名学生。据此解答。
【详解】①根据分析,画图如下
②
(名)
答:参加参加比赛共有50名学生。
24.40天
【分析】根据题意可知,工作总量∶工作时间=工作效率(一定),相对应的工作总量和工作时间成正比例关系。因此可以设完成这项生产任务需要的天数为x,列比例解答。
【详解】解:设完成这项生产任务要用x天。
1200∶x=240∶8
240x=1200×8
240x=9600
x=40
答:完成这项生产任务要用40天。
25.(1)见详解
(2)大小;形状
(3)圆锥;339.12
【分析】(1)把图形按照n∶1放大,就是将图形的每一条边放大到原来的n倍,放大后图形与原图形对应边长的比是n∶1。
(2)图形变大了,但形状没有发生变化,叫做图形的放大。
(3)以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。以图形②的一条较长的直角边所在直线为轴旋转一周,得到的圆锥,底面半径是6厘米,高9厘米,根据圆锥体积=底面积×高÷3,列式计算即可。
【详解】
(1)
(2)观察放大前后的图形,发现图形①放大后,大小变了,形状没变。
(3)3.14×62×9÷3
=3.14×36×9÷3
=339.12(立方厘米)
如果以图形②的一条较长的直角边所在直线为轴旋转一周,那么会形成一个圆锥,这个图形的体积是339.12立方厘米。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)