沪科版九年级数学上册试题 期末综合测试卷(含解析)

文档属性

名称 沪科版九年级数学上册试题 期末综合测试卷(含解析)
格式 docx
文件大小 577.6KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2024-06-26 13:18:03

图片预览

文档简介

期末综合测试卷
一.选择题(共10小题,满分50分,每小题5分)
1.如图,点D为边上任一点,交于点E,连接相交于点F,则下列等式中不成立的是( )
A. B. C. D.
2.如图,在网格正方形中,每个小正方形的边长为1,顶点为格点,若的顶点均是格点,则的值是( )
A. B. C. D.
3.如图,在菱形ABCD中,,M是对角线BD上的一个动点,,则的最小值为( )
A.1 B. C. D.2
4.如图,在和中,,点A在边的中点上,若,,连结,则的长为( )
A. B. C.4 D.
5.如图,若抛物线与x轴交于A、B两点,与y轴交于点C,若.则的值为( )
A. B. C. D.
6.如图,在中,,,,,垂足为点,动点从点出发沿方向以的速度匀速运动到点,同时动点从点出发沿射线方向以的速度匀速运动.当点停止运动时,点也随之停止,连接,设运动时间为,的面积为,则下列图象能大致反映与之间函数关系的是( )
A.B.
C.D.
7.如图,已知抛物线的对称轴是,直线轴,且交抛物线于点,下列结论错误的是( )
A. B.若实数,则
C. D.当时,
8.二次函数y=ax2+bx+c(a≠0)的图像如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图像可能是(  )
A. B.
C. D.
9.如图,在正方形ABCD中,,M是AD边上的一点,.将沿BM对折至,连接DN,则DN的长是( )
A. B. C.3 D.
10.如图,已知菱形的边长为2,对角线相交于点O,点M,N分别是边上的动点,,连接.以下四个结论正确的是( )
①是等边三角形;②的最小值是;③当最小时;④当时,.
A.①②③ B.①②④ C.①③④ D.①②③④
二.填空题(共6小题,满分30分,每小题5分)
11.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是_____.
12.定义一种运算;,.例如:当,时, ,则的值为_______.
13.如图,抛物线的顶点为P(-2,2)与y轴交于点A(0,3),若平移该抛物线使其顶P沿直线移动到点,点A的对应点为,则抛物线上PA段扫过的区域(阴影部分)的面积为_____
14.如图,在直角坐标系中,O为坐标原点与(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=_______.(结果用a,b表示)
15.已知是直角三角形,连接以为底作直角三角形且 是边上的一点,连接和 且则长为______.
16.如图,在中,,,,,垂足为,为的中点,与交于点,则的长为_______.
三.解答题(共7小题,满分70分)
17.(8分)
18.(8分)如图,点A在第一象限,轴,垂足为C,,,反比例函数的图像经过的中点B,与交于点D.
(1)求k值;
(2)求的面积.
19.(8分)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角,同时量得CD为.问烟囱AB的高度为多少米?(精确到,参考数据:)
20.(10分)△ABC在边长为l的正方形网格中如图所示.
①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.
②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
③在②的条件下求出点B经过的路径长.
21.(10分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.
(1)求y与x之间的函数关系式.
(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?
(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?
22.(12分)如图,在中,,,点D在上,,连接,,点P是边上一动点(点P不与点A,D,C重合),过点P作的垂线,与相交于点Q,连接,设,与重叠部分的面积为S.
(1)求的长;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.
23.(14分)在平面直角坐标系中,直线y=mx-2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=-x2+2mx-m2+2与y轴交于点C.
(1)如图,当m=2时,点P是抛物线CD段上的一个动点.
①求A,B,C,D四点的坐标;
②当△PAB面积最大时,求点P的坐标;
(2)在y轴上有一点M(0,m),当点C在线段MB上时,
①求m的取值范围;
②求线段BC长度的最大值.
答案解析
一.选择题
1.C
【分析】根据平行线分线段成比例定理即可判断A,根据相似三角形的性质即可判断B、C、D.
【详解】解:∵,
∴,△DEF∽△CBF,△ADE∽△ABC,故A不符合题意;
∴,,故B不符合题意,C符合题意;
∴,故D不符合题意;
故选C.
2.C
【分析】过点C作AB的垂线,构造直角三角形,利用勾股定理求解即可.
【详解】解:过点C作AB的垂线交AB于一点D,如图所示,
∵每个小正方形的边长为1,
∴,
设,则,
在中,,
在中,,
∴,
解得,
∴,
故选:C.
3.C
【分析】连接AF,则AF的长就是AM+FM的最小值,证明△ABC是等边三角形,AF是高线,利用三角函数即可求解.
【详解】解:连接AF,则AF的长就是AM+FM的最小值.
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,

∴F是BC的中点,
∴AF⊥BC.
则AF=AB sin60°=2.
即的最小值是.
故选:C
4.D
【分析】过点E作EF⊥BC,交CB延长线于点F,过点A作AG⊥BE于点G,根据等腰直角三角形的性质可得,∠BED=45°,进而得到,,,再证得△BEF∽△ABG,可得,然后根据勾股定理,即可求解.
【详解】解:如图,过点E作EF⊥BC,交CB延长线于点F,过点A作AG⊥BE于点G,
在中,∠BDE=90°,,
∴,∠BED=45°,
∵点A在边的中点上,
∴AD=AE=1,
∴,
∴,
∵∠BED=45°,
∴△AEG是等腰直角三角形,
∴,
∴,
∵∠ABC=∠F=90°,
∴EF∥AB,
∴∠BEF=∠ABG,
∴△BEF∽△ABG,
∴,即,
解得:,
∴,
∴.
故选:D
5.A
【分析】观察图象,先设 ,, ,根据已知条件及证明,得出,利用根与系数的关系知,最后得出答案.
【详解】设 ,, ,
∵二次函数的图象过点,
∴,
∵,,
∴,
∴,
∴,
即,
令,
根据根与系数的关系知,
∴,

故选:A.
6.B
【分析】分别求出M在AD和在BD上时△MND的面积为S关于t的解析式即可判断.
【详解】解:∵∠ACB=90°,∠A=30°,,
∴∠B=60°,,,
∵CD⊥AB,
∴,,,
∴当M在AD上时,0≤t≤3,
,,
∴,
当M在BD上时,3<t≤4,

∴,
故选:B.
7.C
【分析】先根据抛物线对称轴求出,再由抛物线开口向上,得到,则由此即可判断A;根据抛物线开口向上在对称轴处取得最小值即可判断B;根据当时,,即可判断C;根据时,直线l与抛物线的两个交点分别在y轴的两侧,即可判断D.
【详解】解:∵抛物线的对称轴是,
∴,
∴,
∵抛物线开口向上,
∴,
∴,
∴,故A说法正确,不符合题意;
∵抛物线开口向下,抛物线对称轴为直线x=-1,
∴当x=-1时,,
∴当实数,则,
∴当实数时,,故B说法正确,不符合题意;
∵当时,,
∴a+2a-2<0,即3a-2<0,故C说法错误,符合题意;
∵,
∴直线l与抛物线的两个交点分别在y轴的两侧,
∴,故D说法正确,不符合题意;
故选C.
8.A
【分析】根据二次函数(a≠0)的图像开口向上,得出a>0,与y轴交点在y轴的负半轴,得出c<0,利用对称轴>0,得出b<0,然后对照四个选项中的图像判定即可.
【详解】解:因为二次函数的图像开口向上,得出a>0,与y轴交点在y轴的负半轴,得出c<0,利用对称轴>0,得出b<0,
所以一次函数y=ax+b经过一、三、四象限,反比例函数经过二、四象限.
故选:A.
9.D
【分析】延长MN与CD交于点E,连接BE,过点N作,根据折叠的正方形的性质得到,在中应用勾股定理求出DE的长度,通过证明,利用相似三角形的性质求出NF和DF的长度,利用勾股定理即可求解.
【详解】解:如图,延长MN与CD交于点E,连接BE,过点N作,
∵,M是AD边上的一点,,
∴,,
∵将沿BM对折至,四边形ABCD是正方形,
∴,,
∴(HL),
∴,
∴,
在中,设,则,
根据勾股定理可得,解得,
∴,,
∵,,
∴,
∴,
∴,,
∴,
∴,
故选:D.
10.D
【分析】①依据题意,利用菱形的性质及等边三角形的判定与性质,证出,然后证,AM=AN,即可证出.
②当MN最小值时,即AM为最小值,当时,AM值最小,利用勾股定理求出,即可得到MN的值.
③当MN最小时,点M、N分别为BC、CD中点,利用三角形中位线定理得到,用勾股定理求出,,而菱形ABCD的面积为:,即可得到答案.
④当时,可证,利用相似三角形对应边成比例可得,根据等量代换,最后得到答案.
【详解】解:如图:在菱形ABCD中,AB=BC=AD=CD,,OA=OC,
∵,
∴,与为等边三角形,
又,

∴,
在与中
∴,
∴AM=AN,
即为等边三角形,
故①正确;
∵,
当MN最小值时,即AM为最小值,当时,AM值最小,
∵,

即,
故②正确;
当MN最小时,点M、N分别为BC、CD中点,
∴,
∴,
在中,

∴,
而菱形ABCD的面积为:,
∴,
故③正确,
当时,




故④正确;
故选:D.
二.填空题
11.
【分析】根据余弦的定义解答即可.
【详解】解:在Rt△ABC中,cosA==,
故答案为:.
12.
【分析】根据代入进行计算即可.
【详解】解:
=
=
=
=.
故答案为:.
13.12.
【分析】连接AP,A′P′,过点A作AD⊥PP′于点D,根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.
【详解】解:连接AP,A′P′,过点A作AD⊥PP′于点D,
由题意可得出:AP∥A′P′,AP=A′P′,
∴四边形APP′A′是平行四边形,
∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),
∴PO2,∠AOP=45°,
又∵AD⊥OP,
∴△ADO是等腰直角三角形,
∴PP′=22=4,
∴AD=DO=sin45° OA3,
∴抛物线上PA段扫过的区域(阴影部分)的面积为:412.
故答案为:12.
14.a
【分析】设B(m,),A(,n),则P(m,n),阴影部分的面积S△AOB=矩形的面积﹣三个直角三角形的面积可得结论.
【详解】解:设B(m,),A(,n),则P(m,n),
∵点P为曲线C1上的任意一点,
∴mn=a,
∴阴影部分的面积S△AOB=mnbb(m)(n)
=mn﹣b(mn﹣b﹣b)
=mn﹣bmn+b
a.
故答案为:a.
15.
【分析】将线段绕点顺时针旋转,得到线段,连接,HE,利用证明,得,,则,即可解决问题.
【详解】解:将线段绕点顺时针旋转,得到线段,连接,HE,
是等腰直角三角形,
∴∠HBD=45°
∵∠FBD=45°
∴点B、F、H共线
又是等腰直角三角形,
,,,

,,






故答案为:.
16.
【分析】过点F作FH⊥AC于H,则∽,设FH为x,由已知条件可得,利用相似三角形的性质:对应边的比值相等即可得到关于x的方程,解方程求出x的值,利用即可得到DF的长.
【详解】如解图,过点作于,
∵,
∴,
∴,
∵,点是的中点,
∴,
∵,
∴∽

∴,
设为,则,由勾股定理得,
又∵,
∴,
则,
∵且,
∴∽,
∴,
即,
解得,
∴.




故答案为:
三.解答题
17.解:原式.
18.
(1)
解:根据题意可得,
在中,,,


,,

的中点是B,


(2)
解:当时,,



19.设,
在中,
,得.
在中,
,得.

解方程,得.

答:烟囱AB的高度为53.2m.
20.解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);
②如图,△A2B2C为所作;
③,
点B经过的路径长.
21.(1)解:设y与x之间的函数关系式为,根据题意得:
,解得:,
∴y与x之间的函数关系式为;
(2)解:(-5x+150)(x-8)=425,
整理得:,
解得:,
∵8≤x≤15,
∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;
(3)解:根据题意得:
∵8≤x≤15,且x为整数,
当x<19时,w随x的增大而增大,
∴当x=15时,w有最大值,最大值为525.
答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.
22.
(1)
解:∵,,,
∴,
∵,
∴=5,
∴AC=AD+DC=5+3=8;
(2)
解:由(1)得AD=5,
∵AP=x,
∴PD=5-x,
∵过点P作的垂线,与相交于点Q,
∴,
∵,
∴即,
在和中

∴,


∵与重叠部分的面积为S
∴的面积为S
即,
∵点P不与点A,D,C重合,
∴,
即.
当在上运动时,如图,设交于点,


综上所述,
23.
(1)
∵直线与x轴,y轴分别交于A,B两点,
∴A(2,0),B(0,-2m).
∵,
∴抛物线的顶点坐标是D(m,2).
令x=0,则,
∴.
①当m=2时,-2m=-4,则,
∴点B(0,-4),C(0,-2),D(2,2);
②由上可知,直线AB的解析式为,抛物线的解析式为,
如图,过点P作轴交直线AB于点E.
设点P的横坐标为t,
∴,,
∴,
∴△PAB的面积=,
∵-1<0,
∴当t=1时,△PAB的面积的最大值为3,此时P(1,1);
(2)
由(1)可知,B(0,-2m),C(0,-m2+2),
①∵y轴上有一点,点C在线段MB上,
∴需分两种情况讨论:
当时,解得:,
当时,解得:,
∴m的取值范围是或;
②当时,
∵,
∴当m=1时,BC的最大值为3;
当时,
∴,
当m=-3时,点M与点C重合,BC的最大值为13,
∴BC的最大值是13.
同课章节目录