19.2平行四边形 解答题专题提升训练(含答案)沪科版八年级数学下册

文档属性

名称 19.2平行四边形 解答题专题提升训练(含答案)沪科版八年级数学下册
格式 docx
文件大小 269.5KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2024-06-27 07:02:39

图片预览

文档简介

沪科版八年级数学下册《19.2平行四边形》解答题专题提升训练
1.如图,点A、D、C、B在同一条直线上,AC=BD,AE=BF,AE∥BF.
求证:(1)△ADE≌△BCF;
(2)四边形DECF是平行四边形.
2.如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.
(1)求证:∠1=∠2;
(2)求证:△DOF≌△BOE.
3.如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.
(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是    ;
(2)添加了条件后,证明四边形AECF为平行四边形.
4.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.
(1)求证:△ABC≌△DEF;
(2)连接AD,求证:四边形ABED是平行四边形.
5.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.
(1)若∠AOE=50°,求∠ACB的度数;
(2)求证:AE=CF.
6.如图,点E是 ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.
(1)若AD的长为2,求CF的长.
(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.
7.如图,在 ABCD中,点E、F分别在边AD、BC上,且DE=BF,直线EF与BA、DC的延长线分别交于点G,H.求证:
(1)△DEH≌△BFG;
(2)AG=CH.
8.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.
(1)求证:AE=BC;
(2)若AB=3,CD=1,求四边形ABCE的面积.
9.如图,在 ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.
(1)求证:四边形BMDN是平行四边形;
(2)已知AF=12,EM=5,求AN的长.
10.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.
(1)求证:△AFN≌△CEM;
(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.
11.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.
(1)求证:四边形BDEF为平行四边形;
(2)当∠C=45°,BD=2时,求D,F两点间的距离.
12.如图, ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.
(1)求证:OE=OF;
(2)若EF⊥AC,△BEC的周长是10,求 ABCD的周长.
13.如图,已知四边形ABCD是平行四边形,∠EDC=∠CAB,∠DEC=90°.
(1)求证:AC∥DE;
(2)过点B作BF⊥AC于点F,连接EF,试判断四边形ADEF的形状,并说明理由.
14.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,求证:
(1)EF=CF;
(2)∠DFE=3∠AEF.
15.如图,在平行四边形ABCD中,∠B、∠C的平分线交于P,且分别与AD交于E、F,
(1)求证:△BPC为直角三角形;
(2)若BC=16,CD=3,PE=8,求△PEF的面积.
16.在 ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中说明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),求∠BDG的度数.
17.如图, ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,AE⊥AD.
(1)若BG=1,BC=,求EF的长度;
(2)求证:AB﹣BE=CF.
18.已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在对角线AC上,且BF=DE,AH=CG,连接FH、HE、EG、FG.
(1)求证:FG=EH.
(2)若EG平分∠AEH,FH平分∠CFG,FG∥AB,∠ACD=68°,∠GFH=35°,求∠GHF的度数.
19.如图,在 ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证△ABF≌△EDA;
(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.
20.在平行四边形ABCD中,AC⊥CD,E为BC中点,点M在线段BE上,连接AM,在BC下方有一点N,满足∠CAD=∠BCN,连接MN.
(1)若∠BCN=60°,AE=5,求△ABE的面积;
(2)若MA=MN,MC=EA+CN,求证:AB=AE.
参考答案
1.证明:(1)∵AC=BD,
∴AC﹣CD=BD﹣CD,
即AD=BC,
∵AE∥BF,
∴∠A=∠B,
在△ADE与△BCF中,

∴△ADE≌△BCF(SAS);
(2)由(1)得:△ADE≌△BCF,
∴DE=CF,∠ADE=∠BCF,
∴∠EDC=∠FCD,
∴DE∥CF,
∴四边形DECF是平行四边形.
2.证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠1=∠2;
(2)∵点O是BD的中点,
∴OD=OB,
在△DOF和△BOE中,

∴△DOF≌△BOE(AAS).
3.解:(1)添加条件为:AE=CF,
故答案为:AE=CF;
(2)证明:∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∵AE=CF,
∴四边形AECF为平行四边形.
4.(1)证明:∵BE=CF,
∴BE+EC=CF+EC,
∴BC=EF,
在△ABC和△DEF中,,
∴△ABC≌△DEF(SSS);
(2)证明:由(1)得:△ABC≌△DEF,
∴∠B=∠DEF,
∴AB∥DE,
又∵AB=DE,
∴四边形ABED是平行四边形.
5.(1)解:∵AE⊥BD,
∴∠AEO=90°,
∵∠AOE=50°,
∴∠EAO=40°,
∵CA平分∠DAE,
∴∠DAC=∠EAO=40°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ACB=∠DAC=40°;
(2)证明:∵四边形ABCD是平行四边形,
∴OA=OC,
∵AE⊥BD,CF⊥BD,
∴∠AEO=∠CFO=90°,
∵∠AOE=∠COF,
∴△AEO≌△CFO(AAS),
∴AE=CF.
6.解:(1)∵四边形ABCD是平行四边形,
∴AD∥CF,
∴∠DAE=∠CFE,∠ADE=∠FCE,
∵点E是CD的中点,
∴DE=CE,
在△ADE和△FCE中,,
∴△ADE≌△FCE(AAS),
∴CF=AD=2;
(2)∵∠BAF=90°,
添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).
7.解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,∠B=∠D,AB=CD,
∴∠G=∠H,
∵∠D=∠B,∠H=∠G,DE=BF,
∴△DEH≌△BFG(AAS);
(2)∵△DEH≌△BFG,
∴GB=HD,
又∵AB=CD,
∴GB﹣AB=HD﹣CD,
∴AG=CH.
8.证明:(1)∵AB∥CD,∠B=45°
∴∠C+∠B=180°
∴∠C=135°
∵DE=DA,AD⊥CD
∴∠E=45°
∵∠E+∠C=180°
∴AE∥BC,且AB∥CD
∴四边形ABCE是平行四边形
∴AE=BC
(2)∵四边形ABCE是平行四边形
∴AB=CE=3
∴AD=DE=AB﹣CD=2
∴四边形ABCE的面积=3×2=6
9.(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∵BM⊥AC,DN⊥AC,
∴DN∥BM,
∴四边形BMDN是平行四边形;
(2)解:∵四边形BMDN是平行四边形,
∴DM=BN,
∵CD=AB,CD∥AB,
∴CM=AN,∠MCE=∠NAF,
∵∠CEM=∠AFN=90°,
∴△CEM≌△AFN,
∴FN=EM=5,
在Rt△AFN中,AN===13.
10.(1)证明:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠AFN=∠CEM,
∵FN=EM,AF=CE,
∴△AFN≌△CEM(SAS).
(2)解:∵△AFN≌△CEM,
∴∠NAF=∠ECM,
∵∠CMF=∠CEM+∠ECM,
∴107°=72°+∠ECM,
∴∠ECM=35°,
∴∠NAF=35°.
11.(1)证明:∵△ABC是等腰三角形,
∴∠ABC=∠C,
∵EG∥BC,DE∥AC,
∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,
∴∠DEG=∠C,
∵BE=BF,
∴∠BFE=∠BEF=∠AEG=∠ABC,
∴∠F=∠DEG,
∴BF∥DE,
∴四边形BDEF为平行四边形;
(2)解:∵∠C=45°,
∴∠ABC=∠BFE=∠BEF=45°,
∴△BDE、△BEF是等腰直角三角形,
∴BF=BE=BD=,
作FM⊥BD于M,连接DF,如图所示:
则△BFM是等腰直角三角形,
∴FM=BM=BF=1,
∴DM=3,
在Rt△DFM中,由勾股定理得:DF==,
即D,F两点间的距离为.
12.(1)证明:∵四边形ABCD是平行四边形,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,
在△DFO和△BEO中,,
∴△DFO≌△BEO(ASA),
∴OE=OF.
(2)解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,OA=OC,
∵EF⊥AC,
∴AE=CE,
∵△BEC的周长是10,
∴BC+BE+CE=BC+BE+AE=BC+AB=10,
∴ ABCD的周长=2(BC+AB)=20.
13.(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCA=∠CAB,
∵∠EDC=∠CAB,
∴∠EDC=∠DCA,
∴DE∥AC.
(2)解:结论:四边形ADEF是平行四边形.
理由:∵AC∥DE,
∴∠EDC=∠ACD
∵四边形ABCD是平行四边形,
∴CD∥AB,CD=AB,
∴∠ACD=∠CAB,
∴∠EDC=∠FAB,
∵BF⊥AC,∠DEC=90°,
∴∠DEC=∠AFB=90°,
∴△EDC≌△FAB(AAS),
∴DE=AF,
∵DE∥AF,
∴四边形ADEF是平行四边形.
14.解:(1)证明:延长CF交BA的延长线于G,延长EF交CD的延长线于R.如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∵F是AD的中点,
∴CF=GF,EF=ER,
∴四边形EGRC是平行四边形,
∵CE⊥AB,
∴∠CEG=90°,
∴四边形EGRC是矩形,
∴CG=ER,
∴EF=CG=CF=GF,
即EF=CF;
(2)∵EF=GF,
∴∠G=∠FEG,
∵AD∥BC,CF=GF,
∴AG=AB,
∴AF=AG,
∴∠G=∠AFG=∠DFC,
∵∠CFE=∠G+∠AEF,
∴∠DFE=∠CFE+∠DFC=3∠AEF.
15.(1)证明:∵四边形ABCD为平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵∠B、∠C的平分线交于P,
∴∠PBC=∠ABC,∠BCP=∠BCD,
∴∠PBC+∠BCP=(∠ABC+∠BCD )=90°,
∴∠BPC=90°,即△BPC为直角三角形;
(2)解:∵四边形ABCD为平行四边形,
∴AD∥CB,
∴∠CBE=∠BEA,∠BCF=∠CFD,
∴∠ABE=∠BEA,∠DCF=∠CFD,
∴AB=AE=3,CD=DF=3,
∴EF=10,
∴Rt△PEF中,PE=8,EF=10,
∴PF=6,
∴△PEF的面积=24.
16.(1)证明:如图1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:如图2,
连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGE+∠DGE=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
17.解:(1)∵CG⊥AB,BG=1,,
∴.
∵∠ABF=45°,
∴△BGE是等腰直角三角形,
∴EG=BG=1,
∴EC=CG﹣EG=3﹣1=2,
∵在平行四边形ABCD中,AB∥CD,∠ABF=45°,CG⊥AB,
∴∠CFE=∠ABF=45°,∠FCE=∠BGE=90°,
∴△ECF是等腰直角三角形,
∴EF==2;
(2)证明:过E作EH⊥BE交AB于H,
∵∠ABF=45°,∠BEH=90°,
∴△BEH是等腰直角三角形,
∴,BE=HE,
∴∠BHE=45°,
∴∠AHE=180°﹣∠BHE=180°﹣45°=135°,
由(1)知,△BGE和△ECF都是等腰直角三角形,
∴∠BEG=45°,CE=CF,
∴∠BEC=180°﹣∠BEG=180°﹣45°=135°,
∴∠AHE=∠CEB,
∵AE⊥AD,
∴∠DAE=90°,
∴∠BAD=∠DAE+∠EAB=90°+∠EAB,
由(1)知,∠FCE=90°,
∴∠BCD=∠FCE+∠BCG=90°+∠BCG,
∵在平行四边形ABCD中,∠BAD=∠BCD,
∴90°+∠EAB=90°+∠BCG,
∴∠EAB=∠BCG,
即∠EAH=∠BCE,
在△EAH和△BCE中,
∴△EAH≌△BCE(AAS),
∴AH=CE=CF,
∴AB﹣BE=AB﹣BH=AH=CF,
即AB﹣BE=CF.
18.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAC=∠ACB,
∵DE=BF,
∴CF=AE,
在△AEH和△CFG中,

∴△AEH≌△CFG(SAS),
∴FG=EH;
(2)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAC=∠ACD=68°,
∵FH平分∠CFG,∠GFH=35°,
∴∠CFG=70°,
∵AB∥FG,
∴∠B=∠CFG=70°,
∴∠ACB=180°﹣68°﹣70°=42°,
△CFH中,∠GHF=∠CFH+∠ACB=35°+42°=77°.
19.(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠ABC=∠ADC,
∵BC=BF,CD=DE,
∴BF=AD,AB=DE,
∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,
∴∠ADE=∠ABF,
∴△ABF≌△EDA.
(2)证明:延长FB交AD于H.
∵AE⊥AF,
∴∠EAF=90°,
∵△ABF≌△EDA,
∴∠EAD=∠AFB,
∵∠EAD+∠FAH=90°,
∴∠FAH+∠AFB=90°,
∴∠AHF=90°,即FB⊥AD,
∵AD∥BC,
∴FB⊥BC.
20.(1)解:∵四边形ABCD为平行四边形,
∴AB∥CD,AD∥BC,
∴∠CAD=∠ACB=∠BCN=60°,
又AC⊥CD,
∴AB⊥AC,
∴∠B=30°,
在Rt△ABC中,E为BC的中点,
∴BC=2AE=10,
∴AC=BC=5,
∴,
∴;
(2)证明:延长CN至G,使CG=AC,
由(1)知∠ACM=∠GCM,
又MC=MC,
∴△ACM≌△GCM,
∴AM=GM,∠MAC=∠G,
又AM=MN,
∴GM=MN,
∴∠G=∠MNG=∠MAC=∠MAE+∠EAC,
又由(1)可得EC=EA,
∴∠EAC=∠ACE=∠NCM,
∵∠MNG=∠NCM+∠NMC,
∴∠NMC=∠MAE,
在MC上截取MF=AE,
∴△MAE≌△NMF,
∴ME=FN,
又MC=ME+CE=MF+CF,MC=EA+CN,
∵EA=MF=CE,
∴ME=CN=FN=CF,
∴△NCF为等边三角形,
∴∠MCN=60°,
∴∠ACB=60°,
∴∠ABC=30°,
∴,
∵AE=BC,
∴AB=AE.