南宁二中 2023-2024 学年度下学期高一期末考试
数学试题答案
2 3
1.已知复数 = ,则 的虚部为( )
A. 1 B.1 C. 2 D.2
2 3 (2 3)
【解析】答案:C。 = = 1 2 ,虚部为 2
2
2.下列各组向量中,可以作为基底的是( )
A. 1 = (0 , 0) , 2 = (1 , 2) B. 1 = ( 1 , 2) , 2 = (5 , 7)
C. 1 = (3 , 5) , 2 = (6 , 10) D. 1 = (2 , 3) , 2 = ( 6 , 9)
【解析】答案:B。另外三组向量共线
3.如图,在正方体 1 1 1 1中,异面直线 1 与 1 所成的角为( )
π π π π
A. B. C. D.
3 4 6 2
【答案】A【详解】正方体中, 1 // 1 ,所以 1 与 1 所成的角即异面直线 1 与 1 所成的角,因为△ 1 为
π π
正三角形,所以 1 与 1 所成的角为 ,所以异面直线 1 与 1 所成的角为 。. 3 3
4.已知数据 1, 2, 3, , 8的平均数 = 10,方差
2
1 = 10,则3 1 + 2,3 2 + 2,3 3 + 2, ,3 8 + 2的平均数
和方差 22分别为( )
A. =32, 22 =90 B. =32,
2
2 =92 C. =30,
2
2 =90 D. =30,
2
2 =92
【答案】A【详解】因为 1, 2, 3, , 8的平均数是 10,方差是 10,所以3 1 + 2,3 2 + 2,3 3 + 2, ,3 8 + 2的
平均数是3 × 10 + 2 = 32,方差是32 × 10 = 90.故选:A.
5.设 、 为不重合的两平面, 、 为不重合的两直线,则下列说法正确的是( )
A. // , // ,且 , ,则 // B. // , ⊥ ,则 ⊥
C. ⊥ , ⊥ ,则 // D. ⊥ , ∩ = ,则 与 α不垂直
【解析】答案:D
A.缺少条件 ∩ = ,错误 B. 与 夹角不固定,错误
C.可能会出现 ,错误 D. 与 不重合,不可能有第二个交点,且 与 不平行,故 与 α不垂直,正确
6.已知样本空间Ω = {1,2,3,4,5,6,7,8},事件 = {1,2,3,4},事件 = {1,2,5,6},事件 = {3,4,5,6},则下列选项错误的
是()
A. 与 独立 B. 与 独立
高一下期考数学试卷答案第1页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
C. 与 独立 D. ( ) = ( ) ( ) ( )
【解析】答案:D
1 1 1
( ) = ( ) = ( ) = , ( ) = ( ) = ( ) = ,即 、 、 两两独立。但 ( ) ( ) ( ) = ≠ 0 = ( ),
2 4 8
故 D 错误,选择 D。
7 冬奥会会徽以汉字“冬”为灵感来源,结合中国书法的艺术形态,将悠久的中国传统文化底蕴与国际化风格融为一
体,呈现出中国在新时代的新形象、新梦想.某同学查阅资料得知,书法中的一些特殊画笔都有固定的角度,比如
在弯折位置通常采用 30°、45°、60°、90°、120°、150°等特殊角度下.为了判断“冬”的弯折角度是否符合书法中的
美学要求.该同学取端点绘制了△ABD,测得 AB=5,BD=6,AC=4,AD=3,若点 C 恰好在边 BD 上,则sin ∠ 的
值为( )
1 5 14 22
A. B. C. D.
2 9 6 6
【答案】C
AD2 + BD2 AB2 9+36 25 5
【解析】由题意,在△ABD中,由余弦定理,cos ADB = = = ;因为 ADB (0,π),
2AD BD 2 3 6 9
5 2 14 AC AD
所以sin ADB = 1 cos2 ADB = 1 ( )2 = ,在 ACD中,由正弦定理 = ,所以
9 9 sin ADB sin ACD
4 3
= 14
2 14 sin ACD ,解得sin ACD = ,
6
9
△
8.已知 为△ 内一点,且满足3 + 4 + 5 = 2 + 3 + ,则 = △
2 1 3 3
A. B. C. D.
5 4 4 5
【解析】答案:B
原式化为3 + 4 + 5 = 2( ) + 3( ) + ( ),即4 + 5 + 3 = 0
4 5 3 4 5 3
方法 1:原式继续化为4 + 5 = 3 ,即 + = ,延长 至 H 点,令 = + = ,
9 9 9 9 9 9
1
即 , , 三点共线,则 △ = = 。
△ 4
△ 3 1方法 2:由奔驰定理, : : = 4: 5: 3,故 = = △ 4+5+3 4
9.已知复数 1 = 1 + , 2 = 3 + 3 ,则下列说法正确的是( )
A.| 1 + 2| = 16 B. 1 2对应的点在复平面的第三象限
C. 1 2为纯虚数 D.
1 ∈
2
高一下期考数学试卷答案第2页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
【解析】答案:BCD
A.| 1 + 2| = |4 + 4 | = 4√2,错误
B. 1 2 = 2 2 ,对应的点在复平面的第三象限,正确
C. 1 2 = (1 + )(3 + 3 ) = 6 ,为纯虚数,正确
1 1+ 1D. = = ∈ ,正确
2 3+3 3
10.在平行四边形 中, = 4, = 2,∠ = 60°, 是 的中点,则( )
A.
1
= + B.| | = 12
2
C.
1
= 6 D. 在 上的投影向量为
2
【答案】AC
【详解】
如图,设 = , = ,则| | = 4, | | = 2, = 4 × 2 × cos60 = 4,
对于 A 项, = + =
1 1
+ = + ,故 A 项正确;
2 2
1对于 B 项,由 A 项可得, = + ,两边取平方,
2
|
1 1 1
|2 = ( + )2 = 2 + + 2 = × 16 + 4 + 4 = 12,则| | = 2√3,故 B 项错误;
2 4 4
1
对于 C 项,因 = + , = + ,
2
1 1 1 1 1
则 = ( + ) ( + ) = 2 + 2 = × 16 × 4 + 4 = 6,故 C 项正确;
2 2 2 2 2
4 1
对于 D 项, 在 上的投影向量为 = = ,故 D 项错误.
| |2 16 4
故选:AC.
11.某校举办了一次法律知识竞赛,为了解学生的法律知识掌握程度,学校采用简单随机抽样从全校 2400 名学生中
抽取了一个容量为 200 的样本,已知样本的成绩全部分布在区间[45,95]内,根据调查结果绘制学生成绩的频率分布
直方图。对于该组数据,下列说法正确的是
高一下期考数学试卷答案第3页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
A.样本的众数为 70
B.样本中得分在区间[75,85)内的学生人数的频率为 0.03
C.用样本数据估计该校学生成绩在 80 分以上的人数约为 600 人
D.用样本数据估计该校学生成绩平均数约为 71.5
【解析】答案:ACD
A.众数为区间[65,75)的中点横坐标 70,正确
B.10 × (0.010 + 0.015 + 0.035 + + 0.010) = 1,即 = 0.03,频率为 0.3
C.样本中成绩在 80 分以上的频率为0.03 × 5 + 0.010 × 10 = 0.25,用样本估计总体,总体人数为 2400 人,其中成
绩在 80 分以上的人数约为2400 × 0.25 = 600,正确
D.样本平均数为0.01 × 50 + 0.15 × 60 + 0.35 × 70 + 0.3 × 80 + 0.1 × 90 = 71.5,正确
12.如图所示,正四棱台 1 1 1 1中, = 2 1 1 = 2 1 = 12,点 在四边形 内,点 是 上靠近
点 的三等分点,则下列说法正确的是( )
A. 1 ⊥平面 1
B.该正四棱台的高为3√3
C.若 1 = 3√6,则动点 P 的轨迹长度是10
D.过点 的平面 与平面 1 平行,则平面 截该正四棱台所得截面多边形的面积为16√2
【答案】AD
2+ 2 2 2+ 2 2
【详解】对于 A 选项,因为 1 1 ∥ ,所以∠ 1 = ∠ 1 1 ,由余弦定理可知
1 1 = 1 1 1 1 ,
2 1 2 1 1 1
62+ 2 32 321 +
2 32
= 1 ,解得 = 6√3,所以 2 + 2 = 2,即 ⊥ ,同理可得 ⊥ ,又因为
12 6 1 1 1 1 1 1 11 1
1 ∩ 1 = 1, 1 、 1 平面 1 ,所以 1 ⊥平面 1 ,故A正确;对于 B 选项,如图①所示,过点 1作
1 ⊥ ,垂足为 ,则四棱台的高为 1 ,因为 1 1 = 6√2, = 12√2,所以 = 3√2,
所以 1 = √
2 2
1 = 3√2,故 B 错误;对于 C 选项,由勾股定理得 = √ 1 2 21 = 6,故点 的轨迹
为以 为圆心,以 6 为半径的圆在正方形内部的部分,如图②,其中 = = 3,故 = = 9,又 = = 6,
5
由勾股定理得 = = 3√3,由于 = = √3,所以∠ = ∠ = ,故∠ = ,故动点 的轨迹长度是
3 6
5
× 6 = 5 ,故 C 错误;对于 D 选项,如图①,分别在棱 , 1上取点 , ,使得 : = : 1 = 2: 1,6
易得平面 ∥平面 1 ,所以△ 即为平面 截该四棱台所得截面多边形,易知 1 = 1 = 6√3,所以 =
2 2
= 1 = 4√3, = = 8√2,所以截面多边形的面积为8√2,故 D 正确,故选:AD. 3 3
图①: 图②:
高一下期考数学试卷答案第4页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
13.已知向量 = (1, ), = (4, ),若 ⊥ ,则 =______
【解析】答案:2或 2
⊥ ,则 = 1 4 + ( ) = 2 4 = 0,则 = 2或 2
14.3 + 是关于 x 的方程 2 6 + = 0的一个根,则实数 = .
【解析】答案:10
若一元二次方程存在虚数根,则该方程的两个根为共轭复数,即 1 = 3 + , 2 = 3 为该方程的两根,由韦达定
理, = (3 + )(3 ) = 10
1
15.对某校学生体重进行调查,采用按样本量比例分配的分层抽样。已知抽取女生 30 人,其平均数和方差分别为
= 52, 21 = 13;抽取男生 20 人,其平均数和方差分别为 = 57,
2
2 = 11,则总样本平均数为______;总样本的
方差为______
91
【解析】答案:54; (小数形式 18.2 也正确)
5
2 30 20设 , 分别为总样本均值和方差, = + = 54
50 50
2 30 20 91 = [13 + (52 54)2] + [11 + (57 54)2] = = 18.2
50 50 5
16.在三棱锥 中, ⊥平面 , = 1, = 1, = √2, = √3,设三棱锥 外接球体积
为 ,则 =____________
【解析】答案:4√2
由于AC2 = AB2 + BC2,故∠ABC = 90°。将三棱锥P ABC补形为边长分别为 1,1,√2的长方体,则其外接球半
1 2 4 4π √2
径R = √12 + 12 + √2 = 1,V = πR3 = ,V
2 3 3 P ABC
= ,故 = 4√2
6
17.△ 的内角 , , 的对边分别为 , , ,且满足 cos = cos .
(1)证明:△ 为等腰三角形
12
(2) 若 = 5,cos = ,求△ 的面积.
13
【详解】(1)因为acosB = bcosA,由正弦定理,所以sinAcosB = cosAsinB ·································· (1 分)
则 sin (A B) = 0 . ·············································································································· (2 分)
= 0 或 = ,
又 A, B (0, ),所以 A B , ···················································································· (3 分)
故 A B = 0,即 A= B ······································································································· (4 分)
.△ 为等腰三角形 ········································································································ (5 分)
(2)由 A=B,则 =
高一下期考数学试卷答案第5页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
2+ 2 2 2 2 25 12
cos = = = , ·························································································· (6 分)
2 2 2 13
即 2
325
= , ··················································································································· (7 分)
2
sin = √1 cos2
5
= ··································································································· (8 分)
13
1
△ = sin ··········································································································· (9 分) 2
1 2 125= sin = ············································································································ (10 分)
2 4
18.为备战运动会,射击队的甲、乙两位射击运动员开展了队内对抗赛。在对抗赛中两人各射靶 10 次,每次命中
的成绩(环数)如下:
甲 4 7 6 5 4 9 10 7 8 10
乙 7 5 8 6 7 9 7 6 7 8
(1)求甲运动员的样本数据第 85 百分位数;
(2)分别计算这两位运动员射击成绩的平均数和方差;
(3)射击队教练希望利用此次射击成绩为依据,挑选一名运动员参加运动会,请你帮助教练分析两个运动员的成绩,
作出判断并说明理由。
1
注:一组数据 x1, x2 , , xn 的平均数为 x ,它的方差为
2 = [( )2 + ( )2 + + ( )2]
1 2
【详解】(1)根据题意可知,;
把甲的数据按从小到大排列如下:
4 4 5 6 7 7 8 9 10 10 ···························································································· (1 分)
因为 85% 10=8.5 ············································································································· (2 分)
所以第 9 个数据是第 85 百分位数, ····················································································· (3 分)
所以第 85 百分位数为 10. ································································································· (4 分)
1
(2) = (甲 4 + 4 + 5 + 6 + 7 + 7 + 8 + 9 + 10 + 10) = 7 ····················································· (5 分) 10
··········································································· (6 分) 1
x = (5+ 6+ 6+ 7+ 7+ 7+ 7+8+8+9)= 7
乙
10
2 1 = [(7 7)2 × 2 + (8 7)2 + (6 7)2 + (10 7)2 × 2 + (5 7)2 + (4 7)2 × 2 + (9 7)2] = 4.6 (8甲 分) 10
2 1s = ( 乙 5 7)
2 + (6 7)2 2+ (7 7)2 4+ (8 7)2 2+ (9 7)2 =1.2 . ············································ (10 分) 10
2 2
(3)由(2)知, s甲>s乙, = x x
甲 乙
高一下期考数学试卷答案第6页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
平均数 方差 命中9环及9环以上的次数
甲 7 4.6 3
乙 7 1.2 1
(i)因为两名运动员射击成绩的平均数相同,且 2 > 2 ,则乙的成绩比甲稳定;
甲 乙
(ii)因为两名运动员射击成绩的平均数相同,命中9环及9环以上的次数甲比乙多,所以,甲爆发力更强.
(iii)乙成绩在平均数上下波动;而甲处于上升势头,从第六次以后就没有比乙少的情况发生,甲更有潜力.
确定人选(11 分),说出理由(12 分),言之有理即可
19.如图,在三棱柱 1 1 1中, , , , 分别是 , , 1 1, 1 1的中点.求证:
(1)证明: , , , 四点共面;直线 1 ,直线 ,直线 三线共点
(2)平面 1//平面 .
【详解】(1)∵G,H 分别是 A1B1,A1C1的中点
∴GH 是△A1B1C1的中位线,∴GH / / B1C1
又在三棱柱 ABC-A1B1C1中,B1C1 / / BC ···················································· (1 分)
∴由平行的传递性,GH / / BC, ·························································································· (2 分)
∴B,C,H,G 四点共面. ································································································ (3 分)
设 = ∩ ,下证 ∈ 1 ···························································································· (4 分)
∵ 平面 1 1 , 平面 1 1
∴ ∈ 平面 1 1 , ∈ 平面 1 1 ·················································································· (5 分)
∵ 1 = 平面 1 1 ∩平面 1 1 ··················································································· (6 分)
∴ ∈ 1,即 1, , 三线共点 ·················································································· (7 分)
(2)∵E,F 分别为 AB,AC 的中点,
∴ // , ···················································································································· (8 分)
∵EF 平面 BCHG,BC 平面 BCHG,
∴EF / / 平面 BCHG, ········································································································ (9 分)
∵在三棱柱 ABC-A1B1C1中, A1B1 / /AB, A1B1 = AB ,
1 1
∴A1G / / EB, A1G = A1B1 = AB = EB ,
2 2
∴四边形 A1EBG 是平行四边形,∴A1E / / GB, ······································································ (10 分)
∵ A1E 平面 BCHG,GB 平面 BCHG,
∴A1E / / 平面 BCHG, ······································································································· (11 分)
∵A1E∩EF=E,A1E,EF 平面 EFA1,
高一下期考数学试卷答案第7页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
∴平面 EFA1 / / 平面 BCHG. ······························································································· (12 分)
20.一个不透明的袋中有 3 个红球,1 个白球,球除了颜色外大小、质地均一致。设计了两个摸球游戏,其规则如下
表所示
游戏 1 游戏 2
摸球方式 不放回依次摸 2 球 有放回依次摸 2 球
若摸出的 2 球颜色相同,则甲获胜
获胜规则
若摸出的 2 球颜色不同,则乙获胜
(1)写出游戏 1 与游戏 2 的样本空间;求出在游戏 1 与游戏 2 中甲获胜的概率,并说明哪个游戏是公平的。
(2) 甲与乙两人玩游戏 2,约定每局胜利的人得 2 分,否则得 0 分,先得到 4 分的人获得比赛胜利,则游戏结束。
每局游戏结果互不影响,求甲获得比赛胜利的概率。
【解析】
(1)记三个红球为 1,2,3 号,记白球为 号,用( , )表示两次摸球的情况,记游戏 1 与游戏 2 的样本空间分别为Ω1,
Ω2 ································································································································· (1 分)
Ω1 = {(1,2), (1,3), (1, ), Ω2 = {(1,1), (1,2), (1,3), (1, )
Ω1 = (2,1), (2,3), (2, ), Ω2 = (2,1), (2,2), (2,3), (2, ),
Ω1 = (3,1), (3,2), (3, ) Ω2 = (3,1), (3,2), (3,3), (3, ),
Ω1 = ( , 1), ( , 2), ( , 3)} Ω2 = ( , 1), ( , 2), ( , 3), ( , )}
···································································································································· (2 分)
记 1 =“在游戏 1 中甲获胜”,记 2 =“在游戏 2 中甲获胜”
1 = {(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)}
2 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), ( , )} ············································· (3 分)
( ) 6 1
( 11) = = = , ···································································································· (4 分) (Ω1) 12 2
( ) 10 5
( 2) =
2 = = , ···································································································· (5 分)
(Ω2) 16 8
故游戏 1 是公平的。 ········································································································· (6 分)
(2)记 =“甲获得第 局游戏胜利”, = 1,2,3,记 =”“甲获得比赛胜利” ···························· (7 分)
5 3
由(1), ( ) = , ( ) = , = 1,2,3 ··········································································· (8 分) 8 8
( ) = ( 1 2 ∪ 1 2 3 ∪ 1 2 3) = ( 1 2) + ( 1 2 3) + ( 1 2 3)
( ) = ( 1) ( 1) + ( 1) ( 2) ( 3) + ( 1) ( 2) ( 3) ··················································· (10 分)
5 5 3 5 5 5 3 5 175
( ) = + + = ··················································································· (12 分)
8 8 8 8 8 8 8 8 256
21.四棱锥 - 中, ⊥平面 ,四边形 为菱形,∠ = 60°, = = 2, 为 的中点.
(1)求证:平面 ⊥平面 ;
(2)求 与平面 所成的角的正切值;
(3)求钝二面角 的余弦值.
高一下期考数学试卷答案第8页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
【解析】(1)证明:∵四边形 ABCD 为菱形,∴DA=DC,
∵∠ADC=60°,∴△ADC 为等边三角形,∴CA=CD,
在△ADC 中,E 是 AD 中点,∴CE⊥AD, ········································································ (1 分)
∵PA⊥平面 ABCD,CE 平面 ABCD,∴CE⊥PA, ····························································· (2 分)
∵PA∩AD=A,PA 平面 PAD,AD 平面 PAD,
∴EC⊥平面 PAD, ······································································································· (3 分)
∵CE 平面 PCE,∴平面 PCE⊥平面 PAD. ······································································ (4 分)
(2)解:∵EC⊥平面 PAD,∴斜线 PC 在平面内的射影为 PE,
即∠CPE 是 PC 与平面 PAD 所成角的平面角, ··································································· (5 分)
∵PA⊥平面 ABCD,AD 平面 ABCD,∴PA⊥AD,
在 Rt△PAE 中,PE= √ 2 + 2 = √5,在 Rt△CED 中,CE= √ 2 2 = √3,
∵EC⊥平面 PAD,PE 平面 PAD,∴EC⊥PE,
√15
在 Rt△CEP 中,tan∠CPE= = , ············································································· (6 分)
5
√15
∴PC 与平面 PAD 所成角的正切值为 .·········································································· (7 分)
5
(3)作 BC 中点 M,以 A 为原点,AM 为 x 轴,AD 为 y 轴,AP 为 z 轴建系
B(√3,-1,0),C(√3,1,0),E(0,1,0),P(0,0,2)
=(√3,-1,-2), =(√3,1,-2), =(0,1,-2) ········································································ (8 分)
设 =( 1, 1, 1), =( 2, 2, 2)分别为平面 PCB,平面 PCE 法向量
{
= 0 √3 2 = 0,即{ 1 1 1 ,即 = (2,0, √3) ······················································· (9 分)
= 0 √3 1 + 1 2 1 = 0
= 0 2 2 1 = 0{ ,即{ ,即 = (0,2,1) ··························································· (10 分)
= 0 √3 2 + 2 2 2 = 0
高一下期考数学试卷答案第9页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
√105
cos < , >= = , ·························································································· (11 分)
| || | 35
√105
则钝二面角 的余弦值为 ··········································································· (12 分)
35
其他建系方法(i):作 CD 中点 N,以 AB 为 x 轴,AN 为 y 轴,AP 为 z 轴建系
1 √3
B(2,0,0),C(1,√3,0),E( , ,0),P(0,0,2)
2 2
1 √3 =(2,0-2), =(1,√3,-2), =( , ,-2)
2 2
√3
平面 PCB 法向量 = (1, , 1),平面 PCE 法向量 = ( 1,√3, 1)
3
其他建系方法(ii):作 AC 中点 O,以 OB 为 x 轴,OC 为 y 轴建系
√3 1
B(√3,0,0),C(0,1 ,0),E( , ,0),P(0,-1,2)
2 2
√3 1
=(√3, 1,-2), =(0,2,-2), =( , ,-2)
2 2
平面 PCB 法向量 = (1, √3, √3),平面 PCE 法向量 = (√3, 1, 1)
22.在△ 中,内角 A, B,C 的对边分别为a,b,c,且sin 2 = sin (cos + cos ).
(1)求角 B 的大小;
(2)点 D是 AC 上的一点, ABD = CBD,且BD =1,求△ 周长的最小值.
(1)由二倍角公式得,2sinBcosB=sinA(cosC+ cosA) ····························································· (1 分)
故由正弦定理得 2b cosB=a cosC+c cosA,2sinB cosB=sinAcosC+sinC cosA=sinB, ·························· (2 分)
而B (0,π), sin B 0, ···································································································· (3 分)
1
故 cos B = , ·················································································································· (4 分)
2
π
则 B = ; ······················································································································· (5 分)
3
高一下期考数学试卷答案第10页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
5
(2)法 1:设 = 1, = 2,设∠ = ,则 ∈ ( , ) ················································· (6 分) 6 6
1 1
在△ 中, 1 = =
1 2 sin
sin 5 = = sin( ),即 1 ,
2 6 √3sin +cos √3 sin +cos
2 1 1 2sin
在△ 中, 1 = =sin( ) sin( ),即 2 = , = ·································· (8 分)
2 6 √3 sin cos √3 sin cos
1 1 2√3(2sin2 +sin )
周长 = 1 + 2 + + = (2 sin + 1) ( + ) = ······················ (9 分) √3 sin +cos √3 sin cos 4 sin2 1
1 1
1 2
令 = sin ∈ ( , 1],则 2√3(2
2+ ) 2√3(2 + + )2 2 √3(2 +1)
2 = = = √3 +4 2 1 4 2 1 4 2 1
√3(2 +1) √3
= √3 + = √3 + ∈ [2√3,+∞) ····································································· (11 分)
2 (2 +1) (2 +1) 2 1
即周长最小值为[2√3,+∞) ································································································ (12 分)
π
法 2:由于 ABD = CBD,则 ABD = CBD = ,
6
AD c
在△ABD中, = ;
sin ABD sin ADB
CD a
在△BCD中, = ;
sin CBD sin BDC
c a
而sin ADB = sin CDB,故 = ,设 ,
AD CD c a a + c= = = t
AD CD AD +CD
a + c b
则b = AD +CD = ,即 t 1,
t t
2 2 2 2 2 2 1 2
在 ABC中,b = a + c 2ac cos B = a + c ac = (a + c) 3ac (a + c) ,
4
a + c bt
即b = ,于是 t 2,故1 t 2,
2 2
2 2
c a
分别在 ABD, CBD利用余弦定理得 AD2 = c2 +1 3c = , DC
2 = a2 +1 3a = ,
t t
2 2
两式相减得a2 c2
a c
+ 3 (c a) = ,
t2
高一下期考数学试卷答案第11页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}
1
3 = 2 3
当a = c 时,上式恒成立,此时 ABC为正三角形,周长为 π ;
sin
3
3t2 3t
当 a c时,a + c = ,于是b = ,
t2 1 t 2 1
3t2 + 3t 3t 3
故 a +b+ c = = = 3 + ,
t2 1 t 1 t 1
3
由于1 t 2,故当 t = 2时, 3 + 取最小值2 3,故 ABC周长的最小值为2 3 .
t 1
高一下期考数学试卷答案第12页(共 12 页)
{#{QQABAYgAogAIQIAAAAgCAQkoCAEQkBCAAYgOxAAIMAIAAAFABAA=}#}南宁二中2023-2024学年度下学期高一期末考试
数学
(时间120分钟,共150分)
一、单远题(共8小题,每小慰5分,共40分,每小题仅有一个正确选项)
1.已知复数缸=2竿,则2的虚部为()
A.-1
B.1
C.-2
D.2
2.下列各组向量中,可以作为基底的是()
A.E=(0,0),=(1,2)
B.可=(-1,2),=(5,7)
C.g=(3,5),2=(6,10)
D.=(2,-3),E=(-6,9)
3.在正方体ABCD-A1B1C1D1中,异面直线A1D与D1C所成的角为()
A.贯
B日
c.8
D.
4.已知数据x1,2,3,x8的平均数元=10,方差s子=10,则3x1+2,3x2+2,3x3+2,…,38+2
的平均数和方差s好分别为()
A.=32,s子=90
B.=32,s3=92
C.y=30,s3=90
D.夕=30,s3=92
5.设a、B为不重合的两平面,n、m为不重合的两直线,则下列说法正确的是()
A.m/a,n/a,且m,ncB,则B/a
B.m/a,m⊥n,则n⊥a
C.m⊥a,a⊥B,则m/B
D.m山a,mnn=P,则n与a不垂直
6.已知样本空间1=1,2,3,4,5,6,7,8,事件A=1,2,3,4,事件B=1,2,5,6,事件C={3,4,5,6,则下列
选项错误的是()
A.A与B独立
B.B与C独立
C.A与C独立
D.P(ABC)=P(A)P(B)P(C)
7.冬奥会会徽以汉字“冬”为灵感来源,结合中国书法的艺术形态,将悠久的中国传统文化底蕴与国际化
风格融为一体,呈现出中因在新时代的新形象、新梦想。某同学查阅资料得知,书法中的一些特殊画
笔都有固定的角度,比如在弯折位置通常采用30°、45°、60°、90°、120°、150等特殊角度.为了判
断“冬”的弯折角度是否符合书法中的美学要求.该同学取端点绘制了△ABD.如图,测得AB=5,
BD-6,AC4,AD-3,若点C恰好在边BD上,则sin ACD的值为(·)
B.
C.
D.
高一下期考数学试卷第1页(共4页)
8.已知0为△ABC内一点,且满足307+40厉+50元=2A正+3BC+CA,则o1=(·)
SAABC
A.月
B.
c.
D.}
二、多进题(共4小恩,每小愿5分,共20分,每小题有多个正确选项,全部进对得5分,部分选对得
2分,有选错或不选得0分),
9.已知复数21=1+i,z2=3+31,则下列说法正确的是()
A.l31+z2l=16
B.31一22对应的点在复平面的第三象限
C.z1z2为纯虚数
D.经eR
10.在平行四边形ABCD中,AB=4,AD=2,∠BAD=60°,E是CD的中点,则()
A.A正=丽+而
B.A正1=12
C.A正.BD=-6
D.AD在A正上的投影向盘为AB
11.某校举办了一次法律知识竞赛,为了解学生的法律知识萃握程度,学校采用简单随机抽样从全校2400
名学生中抽取了一个容量为200的样本,已知样本的成绩全部分布在区间〔45,95]内,根据调查结果绘
制学生成绩的频率分布直方图。对于该组数据,下列说法正确的是()
频
组距
A.样本的众数为70
0.035
B.样本中得分在区间[75,85)内的学生人数的频率为0.03
C.用样本数据估计该校学生成绩在80分以上的人数约为600人
0.015
0.010
D.用样本数据估计该校学生成绩平均数约为71.5
0455565758595得分
12.如图所示,正四棱台ABCD-A1B1C1D1中,AB=2A1B1=2AA1=12,点P在四边形ABCD内,点E
是AD上靠近点A的三等分点,则下列说法正确的是()
A.AA1⊥平面A1BD
B.该正四棱台的高为3V3
C.若A1P=3V6,则动点P的轨迹长度是10π
D.过点E的平面a与平面DAC平行,则平面a截该正四棱台所得截面
多边形的面积为16√2
三、填空题(每小题5分,共20分).
13.已知向量à=(1,x),6=(4,-x),若a1i,则x=▲
14.3+是关于x的方程x2-6x+m=0的一个根,则实数m=_▲
15,对某校学生体重进行调查,样本采用按男女比例分配的分层抽样,已知抽取女生30人,其平均数和方
差分别为?=52,s子=13:抽取男生20人,其平均数和方差分别为=57,s经=11,则总样本平均
数为▲;总样本的方差为▲一
16.在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,BC=V2,AC=V3,设三棱锥P-ABC外接
球体积为,则,=人
高一下期考数学试卷第2页(共4页)