人教A版高中数学必修四:2.2.1 向量的减法运算及其几何意义(课件,教案,练习等9份打包)

文档属性

名称 人教A版高中数学必修四:2.2.1 向量的减法运算及其几何意义(课件,教案,练习等9份打包)
格式 zip
文件大小 731.6KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2015-12-23 20:01:40

文档简介

2.2.2 向量减法运算及其几何意义学情分析
在学生已经学习了平面向量的加法运算及其几何意义,会运用三角形法则和平行四边形法则求两个向量的和向量,具备了一定的作图能力。同时学生在物理中已经学习了力的分解、位移的分解等,这为减法运算打下很好的基础。但是由于是新授课,因此学生接受起来并不轻松,同时对学生规范作图的能力要求比较高,对运算法则的记忆还有待巩固。
2.2.2 向量减法运算及其几何意义效果分析
通过对学生的随机调查,本节课的教学效果很好。
首先,绝大多数的学生的学习态度端正,课堂参与度高,能很好发挥学生的主体地位;
其次,利用多媒体教学,借助于动画演示,向学生反复演示作图规则,学生认可度高;
再次,例题与练习交叉进行,讲练结合,学生通过模仿练习,领悟新知,记忆新知。
不知之处是在现实生活中很少提到向量,应该大量列举物理中的实例,提高学生的学习兴趣。
2.2.2 向量减法运算及其几何意义教学设计
教学环节
教师活动
学生活动
设计意图
一、知识回顾,引出课题
(1)向量加法的三角形法则;
(2)向量加法的平行四边形法则;
(3)向量|+|与||+||、|||-|||的关系
提问两名学生
复习旧知识,为本节服务。
二、创设情景,引入新知
随着也门局势的急剧恶化,在索马里海域执行护航任务的我海军舰艇编队先从索马里海域赶赴亚丁港执行撤侨任务,任务完成后,舰艇编队在回到索马里海域继续开展护航任务。在此过程中,舰艇编队有两次位移,它们分别是什么?它们的关系如何?
学生看完实例,口答
观察两次位移的关系,引出相反向量的定义。
三、归纳总结,引入定义
相反向量:把与长度相同,方向相反的向量,叫做 的相反向量,记作–。规定:零向量的相反向量是零向量。请同学们做练习1。
要求学生总结相反向量的概念,并作练习1。
理解定义,巩固定义。
四、联系类比,引入减法
在实数运算中,实数减去一个实数,等于加上这个实数的相反数,即a-b=a+(-b)。类似的,我们怎样定义向量的减法?
向量的减法:-=+(-),
即减去一个向量相当于加上这个向量的相反向量
思考
口答
五、数形结合,引出减法法则
那么根据减法的定义,已知向量、,如何做出-呢?
具体步骤程为:第一步:在平面内任取一点O,第二步:做=,=,第三步:向量=-。
分组讨论,形成结论。
从向量加法入手,提出问题,帮助学生开启思索,形成结论。
六、例题展示,规范步骤
例1.已知向量、、、,求作向量-,-.

请同学们做练习2.
先独立思考,后讲解习题。
通过例题,培养学生的规范性。
七、剖析例题,加强认识
请同学们思考一下:向量加法的三角形法则与向量减法的三角形法则有什么不同之处。
请同学们做导学案上的练习3。
学生思考,口答。
新旧知识对比,强化认识。
八、数形结合,温故知新。
如果两个向量,共线,则如何做向量-呢?
|-|与||+||的关系如何?|-|与|||-|||的关系如何?
分组讨论,学生发表自己的观点。
与加法运算对比,强化巩固。
九、拓展提高,提高能力
例2.平行四边形中,,, 用、表示向量、.

变式一:当、满足 时,AC与BD垂直?
变式二:当、满足 时,|AC| = |BD|?
练习4.已知||=6,||=8,且|+|=|-|,求|-|.
教师适度点拨,学生独立完成。
拓展知识面,适当提高学生分析问题、解决问题的能力。
十、小结与作业,自主评价
小结:1.相反向量的定义;
2.向量减法的定义及其运算;
3.向量减法的作图方法。
作业:P87练习:2,3.
P91习题2.2A组:第4题
(4),(5),(6),(7).
回顾,总结,反思。
总结,反思,完善认知结构,领悟思想方法,提高能力。
课件16张PPT。普通高中课程标准实验教科书数学必修四山东省莒南第一中学王绪峰向量减法运算及其几何意义复习回顾3.|a+b|与|a|+|b|、||a|-|b||的关系.2.向量加法的平行四边形法则作图步骤;1.向量加法的三角形法则作图步骤;(要点:起点相同连对角)(要点:首尾相接连端点) 中国海军舰艇编队临沂舰等先从索马里海域赶赴亚丁港执行撤侨任务,在任务完成后,舰艇编队于4月1日又回到索马里海域继续开展护航行动。在此过程中,舰艇编队有两次位移,它们分别是什么? AB相反向量:一、相反向量的定义其中a 和–a互为相反向量。规定:零向量的相反向量仍是零向量.相反向量:我们把与 a 长度相等,方向相反的向量,叫做 a 的相反向量,记作–a-一、相反向量的定义思考1:在实数的运算中,我们把减法看成
加法的逆运算,减去一个实数等于加上这
个数的相反数,
a-b=a+(-b),
类比实数减法,我们可以定义向量的减法,二、向量的减法向量减法的定义:DC探究1三、向量减法的几何意义向量减法的定义:三、向量减法的几何意义OAB 注意:
1、两个向量相减,则这两个向量起点必须相同
2、差向量由减向量终点指向被减向量的终点思考2:从 的终点到 的终点作向量,所得向量是什么?ABCAOB思考3:向量加法的三角形法则与向量减法的三角形法则
有什么不同之处?三、向量减法的几何意义例1.如图,已知向量a,b,c,d,求作向量 a-b,c-d.四、例题展演B同向反向A 若 ∥ 时,怎样作出 - ?思考4: |a-b|与|a|+|b|的大小关系如何?|a-b|与|a|-|b|的大小关系
如何?探究2;;.例2:如图:平行四边形ABCD中, 用 表示向量 六、例题展演ADBCa练习4、已知| a |=6,|b|=8,且|a+b|=| a- b|,求|a- b|.七、跟踪训练收获2、向量减法的定义及运算;3、向量减法的作图共线不共线同向不同向作业课本第91页习题2.2A组
题4(4),(5),(6),(7)1、相反向量;制作单位
山东省莒南第一中学
2015年4月12日2.2.2 向量减法运算及其几何意义教材分析
本节课的重点是向量减法运算及其几何意义,难点是差向量的方向。
本节课的学习是建立在学生已经掌握了平面向量的基本概念、相等向量,共线向量的特点,以及向量加法运算的基础上,进一步对于向量减法运算及其几何意义进行研究。新课标指出教学目标应体现学生学会知识与技能的过程也同时成为学生学会学习,形成正确价值观的过程。
本节课先引出相反向量,再类比实数的减法运算,通过相反向量将向量减法运算转化为向量加法运算,体现了加法运算与减法运算的内部联系,培养了学生的化归思想和数形结合思想。这样,不但能帮助学生加深对向量加法运算及其几何意义的理解,也为后面学习向量的数乘运算及其几何意义提供知道性的思想。
2.2.2 向量减法运算及其几何意义观评记录
对于这节课,学校组织部分教师听课、评课,主要从一下几个方面提出了点评:
一、体现了了数学来源于生活,服务于生活。新课一开始,老师利用刚刚发生的也门撤侨事件,不仅能提高学生的学习兴趣,还能培养学生的爱国主义精神,提高学生的综合素质。
二、在讲解向量减法定义的时候,采用了类比的方法从实数的减法回顾设计拉动了学生参与数学活动的教学,提高了学生的主题地位,激发了学生的参与度。
三、经过“向量几何意义?”的生成过程,从运用学生已有的知识负数定义及性质和向量加法的几何意义知识出发类比教学方法,讲解作图向量的几何意义,课程的创生和开发的过程。通过学生动手实践、观察探究,积累数学活动经验、经历数学再发现的过程,从而激发学生的学习兴趣、体验协作学习交流的教学设计是值得学习的。
四、在课例的讲析过程中,学生不仅有演板计算、作图的行为参与、还有认知、情感和思维的参与。这是对高一学生思维发展的准确定位,同时也清醒认识高一学生认知基础的体现,从而知识衔接连贯和课堂学习有效进行。
五、教材处理得当,学生学习效果好。首先在突出教学重点方面通过类比负数的性质的教学方法来落实,难点通过向量加法运算和余数的减法运算是数的加法运算的逆运算类比过程突破向量减法是向量加法的逆运算。其次,在例题训练中又对概念进行了多角度、深层次的理解,在教学设计上有层次的推进。课例讲评不仅重视课堂教学的反馈,同时还重视例题完成情况的过程评价体现。
总之,这一节课是成功的一节课,达到了新课标的要求,学生参与度高,不同层次的学生都得到了发展。
2.2.2 向量减法运算及其几何意义评测练习
1.如图,四边形ABCD中,,,,则( )
A.-+ B.++ C.-(+) D.-+
2.已知、为非零向量,则下列命题中真命题的个数为( )
①若||+||=|+|,则与方向相同
②若||+||=|-|,则与方向相反
③若||+||=|-|,则与的模相等
④若||-||=|-|,则与方向相同
A.0 B.1 C.2 D.3
3.若||=2,||=3,则|-|的取值范围是____________.
4.如图,已知O为平行四边形ABCD内一点,,求.
5.已知≠,≠,且||=||=|-|,求与+所在直线的夹角.
6.已知O为四边形ABCD所在平面外一点,且向量满足.判断四边形ABCD的形状并证明.
2.2.2 向量减法运算及其几何意义 评测练习答案
1.A;
2.D;
3.1≤|-|≤5;
4. +-;
5.300;
6. 四边形ABCD为平行四边形。
2.2.2 向量减法运算及其几何意义课后反思
通过《向量减法运算及其几何意义》的授课,以及各位老师的点评,让我受益匪浅。我的课后反思如下:
一、本节课重点、难点设置合理,突破方法得当。利用类比思想,利用负数及向量的加法运算,使学生在类比中学习,降低了学生的理解难度,使学生更容易接受新知识。同时,借助于练习,又对概念进行了多角度、深层次的理解,反复巩固新知识,方便学生理解记忆。
二、借助于课件,充分调动学生的积极性。通过学生自主思考,分组讨论,学生自发的归纳总结出有关的知识点,并能主动发表自已的观点,普遍接受较好,整体上基本达到了最初的教学目标。
三、合理安排内容,时间,主次分明,教学效果好。课堂上针对本节课的重点向量减法的三角形法则讲解透彻,对课堂效果及时的修正课堂设计,面向不同学习程度的学生均设置了单独提问环节,同时围绕向量减法的概念这一主题设计思考题目加深学生的理解,及时调整教学内容。课后哟安排练习,使学生及时巩固,效果非常好。
四、不足之处:首先班级的活跃气氛掩盖了班上部分同学上课时走神的问题。如何关注全部学生的动向,而不是将注意力只放在上课积极主动的学生身上?这是一项长期工作,但是这堂课也给了我启发——多设置学生活动环节,每个学生都要有参与到课堂中的意识。其次,虽然课堂中设置了很多思考探究问题,试着让学生分组讨论,学生努力自主探索,但还是未能完全体现学生的主体作用。在以后的教学中,应当注意这些问题,提高课堂效率。
2.2.2 向量减法运算及其几何意义课标分析
《向量减法运算及几何意义》是高中数学必修4第二章平面向量第二单元第二节的内容,是平面向量线性运算的一种。向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。本节课的学习在发展学生运算能力的同时还需要培养学生运用向量语言和方法表述和解决实际问题的能力。另外,向量减法运算及几何意义与向量加法运算及即将学习的“向量数乘运算及几何意义”都有着密不可分的关系。