人教A版必修一高中数学2.2.2基本不等式(二)同步课堂作业设计(含解析)

文档属性

名称 人教A版必修一高中数学2.2.2基本不等式(二)同步课堂作业设计(含解析)
格式 docx
文件大小 315.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-07-04 05:44:14

图片预览

文档简介

2.2.2 对数函数及其性质(二)
课时目标 1.进一步加深理解对数函数的性质.2.掌握对数函数的性质及其应用.
1.函数y=logax的图象如图所示,则实数a的可能取值是(  )
A.5 B.
C. D.
2.下列各组函数中,表示同一函数的是(  )
A.y=和y=()2
B.|y|=|x|和y3=x3
C.y=logax2和y=2logax
D.y=x和y=logaax
3.若函数y=f(x)的定义域是[2,4],则y=f()的定义域是(  )
A.[,1] B.[4,16]
C.[,] D.[2,4]
4.函数f(x)=log2(3x+1)的值域为(  )
A.(0,+∞) B.[0,+∞)
C.(1,+∞) D.[1,+∞)
5.函数f(x)=loga(x+b)(a>0且a≠1)的图象经过(-1,0)和(0,1)两点,则f(2)=________.
6.函数y=loga(x-2)+1(a>0且a≠1)恒过定点____________.
一、选择题
1.设a=log54,b=(log53)2,c=log45,则(  )
A.aC.a2.已知函数y=f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为(  )
A.[-1,1] B.[,2]
C.[1,2] D.[,4]
3.函数f(x)=loga|x|(a>0且a≠1)且f(8)=3,则有(  )
A.f(2)>f(-2) B.f(1)>f(2)
C.f(-3)>f(-2) D.f(-3)>f(-4)
4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为(  )
A. B. C.2 D.4
5.已知函数f(x)=lg,若f(a)=b,则f(-a)等于(  )
A.b B.-b
C. D.-
6.函数y=3x(-1≤x<0)的反函数是(  )
A.y= (x>0)
B.y=log3x(x>0)
C.y=log3x(≤x<1)
D.y= (≤x<1)
题 号 1 2 3 4 5 6
答 案
二、填空题
7.函数f(x)=lg(2x-b),若x≥1时,f(x)≥0恒成立,则b应满足的条件是________.
8.函数y=logax当x>2时恒有|y|>1,则a的取值范围是______________.
9.若loga2<2,则实数a的取值范围是______________.
三、解答题
10.已知f(x)=loga(3-ax)在x∈[0,2]上单调递减,求a的取值范围.
11.已知函数f(x)=的图象关于原点对称,其中a为常数.
(1)求a的值;
(2)若当x∈(1,+∞)时,f(x)+能力提升
12.设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2 010)=8,则f(x)+f(x)+…+f(x)的值等于(  )
A.4 B.8
C.16 D.2log48
13.已知logm41.在对数函数y=logax(a>0,且a≠1)中,底数a对其图象的影响
无论a取何值,对数函数y=logax(a>0,且a≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a的逐渐增大,y=logax(a>1,且a≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当01时函数单调递增.
2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.
2.2.2 对数函数及其性质(二)
双基演练
1.A
2.D [y=logaax=xlogaa=x,即y=x,两函数的定义域、值域都相同.]
3.C [由题意得:2≤≤4,所以()2≥x≥()4,
即≤x≤.]
4.A [∵3x+1>1,∴log2(3x+1)>0.]
5.2
解析 由已知得loga(b-1)=0且logab=1,
∴a=b=2.从而f(2)=log2(2+2)=2.
6.(3,1)
解析 若x-2=1,则不论a为何值,只要a>0且a≠1,都有y=1.
作业设计
1.D [因为0所以b2.D [∵-1≤x≤1,
∴2-1≤2x≤2,即≤2x≤2.
∴y=f(x)的定义域为[,2]
即≤log2x≤2,∴≤x≤4.]
3.C [∵loga8=3,解得a=2,因为函数f(x)=loga|x|(a>0且a≠1)为偶函数,且在(0,+∞)为增函数,在(-∞,0)上为减函数,由-3<-2,所以f(-3)>f(-2).]
4.B [函数f(x)=ax+loga(x+1),令y1=ax,y2=loga(x+1),显然在[0,1]上,y1=ax与y2=loga(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+loga2+1+0=a,解得a=.]
5.B [f(-x)=lg=lg()-1=-lg
=-f(x),则f(x)为奇函数,
故f(-a)=-f(a)=-b.]
6.C [由y=3x(-1≤x<0)得反函数是y=log3x(≤x<1),
故选C.]
7.b≤1
解析 由题意,x≥1时,2x-b≥1.
又2x≥2,∴b≤1.
8.[,1)∪(1,2]
解析 ∵|y|>1,即y>1或y<-1,
∴logax>1或logax<-1,
变形为logax>logaa或logax当x=2时,令|y|=1,
则有loga2=1或loga2=-1,
∴a=2或a=.
要使x>2时,|y|>1.
如图所示,a的取值范围为19.(0,1)∪(,+∞)
解析 loga2<2=logaa2.若0若a>1,由于y=logax是增函数,
则a2>2,得a>.综上得0.
10.解 由a>0可知u=3-ax为减函数,依题意则有a>1.
又u=3-ax在[0,2]上应满足u>0,
故3-2a>0,即a<.
综上可得,a的取值范围是111.解 (1)∵函数f(x)的图象关于原点对称,
∴函数f(x)为奇函数,
∴f(-x)=-f(x),
即=-=,
解得a=-1或a=1(舍).
(2)f(x)+(x-1)=+(x-1)
=(1+x),
当x>1时,(1+x)<-1,
∵当x∈(1,+∞)时,f(x)+(x-1)∴m≥-1.
12.C [∵f(x1x2…x2 010)=loga(x1x2…x2 010)=8,
f(x)+f(x)+…+f(x)=loga(xx…x)
=2loga(x1x2…x2 010)=2×8=16.]
13.解 
数形结合可得0