2024 年秋期高中教育阶段学业质量监测
高二数学参考答案及评分意见
一、 选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12
选项 B D C C A B A C AD BC ACD BCD
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
1 1
13. 14. 2 2 15.0.037 16. ( ,+ )
3 eln 2
四、解答题:本题共 6 小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.解:(1)因为 an+1 = an + 3,即 an+1 an = 3. ··········································· 1 分
所以{an}是等差数列,且首项为 a1 = 3,公差为3. ········································ 2 分
于是, an = a1 + (n 1)d = 3+ (n 1) 3= 3n. ················································ 5 分
(2)因为bn = 3n + 3
n . ············································································ 6 分
n(3+ 3n) 3(1 3n ) 3n2 + 3n + 3n+1 3
所以 Sn = b1 + b2 +…+ bn = + = . ··················· 10 分
2 1 3 2
5 6 (6 +8) 8 6 (8+14)
18.解:(1)由题知,剔除数据后 x = = 4 , y = = 6.5 .4 分
4 4
4
(2) xi yi = 336 (6 8+ 8 14) =176. ····················································· 5 分
i=1
4
x 2 = 214 (62i + 8
2 ) =114. ···································································· 6 分
i=1
4
xi yi 4x y
i=1 176 4 4 6.5所以b = = =1.444 2 . ············································ 8 分
2 2 114 4 4 xi 4x
i=1
a = y b x = 6.5 1.44 4 = 0.74. ································································ 10 分
所以 y = b x + a =1.44x + 0.74 ······································································ 11 分
当 x = 20时, y =1.44 20+ 0.74 = 29.54. ···················································· 12 分
19.解:(1)过点C 作CF ⊥ AD,所以CF = AF = 2
5
在△CFD中,因为 cos FDC = ,所以DF =1
5
高二数学参考答案 第 1 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}
于是, AD = 3,过点 E 作 EG AD交 PA于点G P
因为 PE = 2ED,所以 EG = 2,所以 EG BC且
EG = BC ,于是,四边形 BCGE 是平行四边形
所以CE GB,CE 平面 PAB ,GB 平面 EPAB , G
所以CE 平面 PAB ································ 6 分 F
D
(2)法一:因为 PA ⊥平面 ABCD,所以 PA⊥ BC A
因为 BC ⊥ AB,所以 BC ⊥平面 PAB
所以平面 BCEG ⊥平面 PAB
B C
过点 P 作 PH ⊥ BG交 BG 于 H ,
所以 PH ⊥平面 BCEG ,过点H 作HK BC 交CE 于点K
连接 PK ,所以 PKH 为二面角P CE B的平面角 P
在 Rt△PHK 中, PH = 2,HK = 2, PK = 2 2 K
H
2
所以 cos PKH = ······································ 12 分 E
2 G
(2)法 2:如图建系 A xyz , F
D
因为 A(0,0,0) , B(2,0,0) ,C(2,2,0), P(0,0,2 3), A
2 3
D(0,3,0), E(0,2, ).
3 B C
2 3 4 3
所以 BE = ( 2,2, ), BC = (0,2,0) , PC = (2,2, 2 3), PE = (0,2, )
3 3
2 3
设平面 BCE 的法向量 n1 = (x1,y1,z1),所以 n1 BE = 2x1+2y1+ z1 = 0; n1 BC = 2y = 0 1
3
不妨设 x = 3 ,于是, y1 = 0, z1 = 3,所以 n 1 1 = ( 3,0,3)
4 3
设平面 PCE 的法向量 n2 = (x2,y2,z2 ),所以 n1 PE = 2y2 z2 = 0,
3
n1 PC = 2x + 2y 2 3z = 0,不妨设 y2 = 2 ,于是, z , x =1 2 2 2 2 = 3 2
n1 n2 4 3 2
所以 n = (1,2, 3),于是 cos n2 1,n2 = = = n1 n2 2 3 2 2 2
2
所以二面角 P CE B的余弦值为 . ······················································ 12 分
2
20.解:(1)填表如下:
成绩
性别 合计
A 等 B 等
女生 7 3 10
男生 2 8 10
合计 9 11 20
高二数学参考答案 第 2 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}
假设 H0 :体能测试成绩与性别无关. ··················································· 3 分
2 2
2
n(ad bc) 20(7 8 3 2)
= = 5.051 3.841. ················ 5 分
(a + b)(c + d)(a + c)(b + d) 10 10 9 11
假设 H0 不成立,认为体能测试成绩与性别有关. ···································· 6 分
CkC3 k2 7
(2)由题知 X H(9,3,2)且 P(X = k) = (k = 0,1,2).
C39
C0C3 35
P(X = 0) = 2 7 =
3 C9 84
C1C2 42
P(X =1) = 2 7 =
C39 84
C2C1 7
P(X = 2) =
2 7 =
3 ········································································ 10 分 C9 84
于是, X 的分布列为
X 0 1 2
35 42 7
P 84 84 84
2 2
所以 X 的数学期望 E(X ) = 3 = . ·························································· 12 分
9 3
p
21.解:(1)由题知, =1,所以 p = 2 . ·················································· 2 分
2
于是,抛物线C 的方程为 y2 = 4x . ··················································· 4 分
(2)设 AB 方程为 x =my +1. A(x1,y1), B(x2,y2 )
x = my +1
由 联立得: y2 4my 4 = 0.于是, y1 + y2 = 4m, 2
y = 4x
于是, x1 + x2 =m(y1 + y2 ) + 2 = 4m
2 + 2 ························································· 5 分
AB = x 21 + x2 + p = 4(m +1). ···································································· 6 分
直线OC方程为 y = mx.
y = mx
由 联立得:m2x2
4
4x = 0.解得 x = 0 或 x = . ····························· 7 分
y
2 = 4x m
2
4 4 4
于是,点C( , ) ,所以 OC = 1+m2 ············································ 8 分
m2 m m
2
1 8(m2 +1)
所以四边形OACB的面积 S = AB OC = m2 +1 =16 2 ················ 9 分
2 m2
高二数学参考答案 第 3 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}
即 (m2 +1) m2 +1 = 2 2m2,令 t = m2 +1,则m2 = t2 1 0,所以 t2 1
于是, t3 2 2t2 + 2 2 = 0. ···································································· 10 分
即 t3 2t2 2t2 + 2 2 = t2 (t 2) 2(t2 2) = 0
2 + 10
即 (t 2)(t2 2t 2) = 0(t 1)解得 t1 = 2 或 t 2 =
2
于是,m = 1或m = 2+ 5 ·································································· 11 分
所以直线 AB的方程为 x = y +1或 x = 2+ 5 y +1 ····································· 12 分
22.解:(1)当 a =1时, f (x) = x ln x = (ln x +1)(x 0) ······························ 1 分
1 1
当 x (0, )时, f (x) 0,当 x ( ,+ ) 时, f (x) 0.
e e
1 1
所以 f (x)的单调递减区间为 (0, ) ;单调递增区间为 ( ,+ ) ························ 4 分
e e
(2)因为对任意 x 1, xa ln x x +1 0成立.设 (x) = xa ln x x +1(x 1).
所以 (x) = axa 1 ln x + xa 1 1= xa 1(a ln x +1) 1(x 1).
分类:①当 a≥1时, (x) 0,知 (x)在 (1,+ )单调递增,
所以 x 1, (x) (1) = 0,不成立. ······················································ 7 分
②当 a≤0时, (x) 0,知 (x)在 (1,+ )单调递减,所以 x 1, (x) (1) = 0成立.
③当0 a 1时,令 p(x) = (x) = xa 1(a ln x +1) 1(x 1). ······························ 8 分
所以 p (x) = xa 1[(a2 a)ln x + (2a 1)](x 1,0 a 1) . ···································· 9 分
1
(i)若 2a 1≤0即 0 a≤ 时, p (x) 0,知 p(x)在 (1,+ )单调递减,所以 p(x) p(1) = 0,
2
所以 (x) 0,所以 (x)在 (1,+ )单调递减,所以对任意 x (1,+ ) 时, (x) (1) = 0成立.
1 2a 1 2a
1 2
(ii)若 2a 1 0 即 a 1时,由 p (x) = 0 可得 x = ea a
2
1,所以当 x (1,ea a )时,p (x) 0 ,
2
1 2a 1 2a
2 2
于是,p(x)在 (1,ea a ) 单调递增,所以对任意 x (1,ea a )时,p(x) p(1) = 0,所以 (x) 0,
1 2a 1 2a
2 2
所以 (x)在 (1,ea a ) 单调递增,所以对任意 (1,ea a ) 时, (x) (1) = 0成不成立.
1
综上所述: a的取值范围是 ( , ]. ························································ 12 分
2
高二数学参考答案 第 4 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}2024年春期宜宾市普通高中学业质量监测
高二年级 数学
(考试时间:120 分钟;全卷满分:150 分)
注意事项:
1.答卷前,考生务必将自己的考号、姓名、班级填写在答题卡上.
2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.如
需改动,用橡皮擦擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写
在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题 5 分,共 40分.在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.设 i 为虚数单位,复数 z = 2 i的模为
A. 2 B. 5 C.3 D.5
2.下列运算不正确的是
1
A. (sin x) = cos x B. (log x) = C. (2
x ) 2 = 2
x ln 2 D. (cos x) = sin x
x ln 2
3.在建立两个变量 y 与 x的回归模型时,分别选择了 4 个不同的模型,模型1、2、3、4 的相关系数 R2
依次为0.20,0.48,0.96,0.85,则其中拟合效果最好的模型是
A.模型1 B.模型 2 C.模型3 D.模型 4
4. (2x y)5 展开式中含 xy4的项的系数是
A. 10 B. 5 C.10 D.5
3
f (x) = x3 ax2
1
5.已知函数 +1的极小值为 ,则 a =
2 2
A.1 B. 1 C.1或 1 D.0
6.3 名男生和 2 名女生共 5 位同学站成一排照相,且 2 位女生不相邻,则不同排法的种数为
A.120 B.72 C.36 D.12
11 1 3
7.若随机事件 A, B满足 P(A) = , P(B) = , P(A+ B) = ,则P(A B) =
16 4 4
3 3 1 1
A. B. C. D.
4 8 4 8
8.已知函数 f (x) 在R 上可导,且 f (x) f (x) ,若 ea 1 f (1) f (a)成立,则 a的取值范围是
A. ( ,1) B. (1,e) C. (1,+ ) D. (e,+ )
高二年级 数学卷题 第 1 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}
二、选择题:本题共 4小题,每小题 5 分,共 20分.在每小题给出的选项中,有多项
符合题目要求.全部选对的得 5 分,部分选对的得 2分,有选错的得 0 分.
9.随机变量 X N(4,1) ,则
A. E(X +1) = 5 B.D(2X +1) = 5
C. P(X≤3) = P(X≥4) D.P(X≤1) P(X≥6)
10.已知函数 f (x) = xsin x + cos x,x (0,2π),则
π
A. f (x) 有唯一极值点 B. f (x) 在 (0, ) 单调递增
2
π
C. f (x) 的最大值为 D. f (x) 在 x = π处的切线方程为 y = 1
2
11.设 (x +1)5 = a0 + a x + a x
2 5
1 2 +…+ a5x ,则
A. a0 =1 B.展开式中系数最大值为 a5
C. a1 + a3 + a5 =16 D. a0 + 2a1 + 4a2 +…+32a5 = 243
12.在棱长为 2 的正方体 ABCD A1B1C1D1中, P 、Q分别为CC1 , BC 的中点,则
A. BP ⊥ AQ
B.平面 ABP ⊥平面 A1B1Q
A 4 5 C.点 1到平面 ABP的距离为
5
14
D.该正方体的外接球被平面 ABP截得的截面圆的面积为 π
5
三、填空题:本题共 4 小题,每小题 5 分,共 20 分.
13.若随机变量 B(3,p),且 E( ) =1,则 p = _______.
x2 y2
14.已知双曲线 E : =1 (b 0)的离心率为 3 ,则b = _______.
4 b2
15.有 3 台车床加工同一型号的零件,第 1、2、3 台车床加工的次品率依次为 5%、4%、3%,
加工出来的零件混放在一起,已知第 1、2、3 台车床加工的零件数分别占总数的 20%、30%、
50%,任取一个零件,则它是次品的概率为_______.
16.若函数 f (x) = a2ax log2 x无零点,则 a的取值范围是_______.
四、解答题:本题共 6 小题,共 70分.解答应写出文字说明,证明过程或演算步骤.
17.(10 分)
已知数列{an}满足: a1 = 3,点 (an,an+1)在直线 y = x +3上.
(1)求{an}的通项公式;
b = a +3n (2)若 n n ,求数列{bn}的前 n项和 Sn .
高二年级 数学卷题 第 2 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}
18.(12 分)
通过对某商品在 A,B,C,D,E,F 六个城市的销售情况与广告投入的关系进行调研,得
到一些统计量的值(如下表).并发现该商品的销售额 y(单位:百万元)与其广告费 x(单位:
万元)成线性相关.用模型 y = bx + a 进行拟合,得出相应的经验回归方程并进行残差分析绘制
了如图所示的残差图,但在随后数据整理的过程中不小心将部分数据损坏.
6 6
城市 A B C D E F 2
x y xi yi xi
广告费 x /万元 3 6 8 10 i=1 i=1
销售额 y /百万元 6 8 14 15 5 8 336 214
残差
1
A B
0 D
F
C E 城市
-1
现将残差绝对值大于 1的数据被视为异常数据,需要剔除.
(1)剔除异常数据后,分别计算广告费、销售额的平均值;
(2)求剔除异常数据后的经验回归方程;并估计当广告费为 20万元时,销售额为多少.
n
xi yi nx y
b = i=1 参考公式: n , a = y b x
x 2i nx
2
i=1
19.(12 分)
如图,在四棱锥 P ABCD中,PA ⊥平面 ABCD,BC AD , BAD = 90°,AB = BC = 2 ,
5
PA = 2 3, cos ADC = , PE = 2ED. P
5
(1)证明:CE 平面 PAB ;
(2)求平面PCE 与平面BCE 夹角的余弦值.
E
A D
B C
高二年级 数学卷题 第 3 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}
20.(12 分)
某校为了了解学生体能情况,从全校男女生体能测试成绩中随机抽取容量为 20 的样本数据
进行统计分析,样本数据整理如下(满分 100 分):
女生 75 70 75 70 75 95 85 75 90 75
男生 75 70 80 85 90 80 85 80 90 80
若规定成绩不低于 80 为 A 等,成绩低于 80 为 B 等.
成绩
性别 合计
A 等 B 等
女生 10
男生 10
合计 20
(1)完成上表,依据 = 0.05的独立性检验,能否认为体能测试成绩与性别有关联?
(2)从这 20 名体能测试成绩为 B 等的学生中随机挑选 3 名,求挑选出男生成绩为 B 等的人
数 X 的分布列与数学期望.
0.05 0.005
n(ad bc)2
附: 2 = ,其中 n = a +b+ c + d . x 3.841 7.897
(a + b)(c + d)(a + c)(b + d)
21.(12 分)
2
已知 F 为抛物线 E : y = 2px(p 0)的焦点, P 是抛物线 E 上一点,且 PF 的最小值为1.
(1)求 E 的方程;
(2)过 F 的直线 l 与 E 交于 A, B 两点,过原点O 作直线 l 的垂线 l 交 E 于点C (异于点
O).当四边形OACB的面积为16 2 时,求直线 AB的方程.
22.(12 分)
已知函数 f (x) = xa ln x( a R ).
(1)当 a =1时,求 f (x) 的单调区间;
(2)当 x 1时, f (x) x 1,求 a的取值范围.
高二年级 数学卷题 第 4 页 共 4 页
{#{QQABDYKAggioAJBAAAhCUQVaCkCQkAEAAagOwFAAoAAAAANABAA=}#}