本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
《数学广角──集合》教学建议
一、教学内容
借助学生熟悉的题材,渗透集合的有关思想,并利用直观图的方式求出两项比赛都参加的人数。
二、教学目标
1.让学生经历解决问题的过程,了解简单的集合知识,初步感受它的意义。
2.使学生学会借助维恩(Venn)图,运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。21世纪教育网版权所有
3.培养学生合作学习的意识和学习的兴趣。
三、编排特点
1.数形结合,帮助学生感悟集合思想
在数学中,经常用平面上封闭曲线的内部代表 ( http: / / www.21cnjy.com )集合,这种图被称为维恩图。这种表示方法直观、形象,尤其对于解决比较复杂的问题(例如,涉及三个以上的集合的并、交的问题)更能显示出它的优越性。因此,教科书注重借助维恩图表示集合及其运算,帮助学生理解集合的知识,并让学生掌握画维恩图的方法。在通过例题介绍了用维恩图表示集合及其运算的方法后,接下来的练习中,不断让学生应用维恩图解决简单的实际问题,并利用维恩图帮助学生进一步理解集合概念及其关系。例如,在维恩图中填出每个集合的元素,体会集合元素的特性(练习二十三第2题、第3题);用画图的方法表示出两个集合的交集(练习二十三第3题);借助维恩图体会集合的包含关系(练习二十三第6题)等。
2.重视学生的已有基础,自主探索与有意义的接受学习有机结合
虽然学生在计数和计算的学习中,已经接触过集 ( http: / / www.21cnjy.com )合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。而且,在学习用画图的方法解决问题时,更多的是用列举的方法画出集合所有的元素,没有将一个集合的元素圈出来的经验积累。因此,学生很难自己想到画维恩图来表示每一组数据,并用维恩图表示它们之间的运算。对于“重复的人数要减去”,学生是有经验的,能够列式解答。教科书在编排时,充分考虑到学生已有知识和认知基础,先展示学生运用连线法解决问题的例子,再介绍画维恩图的方法,最后还让学生自己列算式解答。这样编排符合学生的认知规律,提示教师要根据学生的实际情况把握好教学的起点和要求。
3.提供丰富的练习内容,有层次地渗透集合知识
首先,注重联系学生生活实际,帮助学生学习掌 ( http: / / www.21cnjy.com )握新知。本单元共有9个题目(含例题、“做一做”、练习题),涉及学生在生活(比赛人数、水果品种、参观人数等)和学习(按要求填数、写成语等)中经常遇到的问题:求两个集合的并集或交集的元素个数。学生虽然熟悉这些情境,但以前不一定从集合的角度来思考并解决问题。因此,这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。其次,有层次地设计练习,逐步丰富并完善学生对集合知识的理解。例如,例题、“做一做”和练习二十三的第1~4题,都提供了具体的集合元素的支撑,帮助学生理解集合及其运算。在学生积累了较丰富的活动经验的基础上,练习二十三的第5题和第6题,则脱离了具体的集合元素的支撑,让学生从集合元素的个数的角度抽象地探索解决此类问题的方法,提升思维的水平。再如,除了提供两个集合之间有交集且部分元素相同的情况外,为避免思维定势,还给出了两个集合没有交集(练习二十三第4题第(1)题)、有包含关系的两个集合(练习二十三第6题第(1)题)等情况,丰富学生对集合间关系的认识。21·cn·jy·com
四、具体编排
1.例1
(1)例1,通过解决生活中 ( http: / / www.21cnjy.com )的实际问题(求两个集合的并集的元素个数),让学生体会集合概念的含义及集合的运算,学习用集合的思想方法解决简单的实际问题。2·1·c·n·j·y
(2)用统计表的形式给出三(1)班参加跳绳、踢毽比赛的学生名单,提出要解决的问题。
(3)呈现学生小组讨论如何解决问题的场 ( http: / / www.21cnjy.com )景,提示教师要让学生自主探索,思考解决问题的方法。随即,呈现了一一列举出参加两项比赛的学生姓名(两个集合的元素),把重复的连起来(找到交集的元素)解决问题的方法,让学生体会在求两个集合的并集时,它们的公共元素在并集中只能出现一次。
(4)介绍用Venn图表示集合及其运算的方法,让学生体会集合元素的特性:互异性和无序性,体会集合的运算:交集、并集。www.21-cn-jy.com
(5)提出问题“可以怎样列式解答? ( http: / / www.21cnjy.com )”让学生用计算解决两个集合的并集的元素个数问题,脱离具体的集合元素,从集合基数(元素个数)的角度思考解决问题的方法。21cnjy.com
2.“做一做”
(1)第1题,要求学生根据集合元素 ( http: / / www.21cnjy.com )的特征填写维恩图,巩固对维恩图的认识,进一步体会集合概念的含义和运算。突出强调中间部分表示什么,让学生用语言表达出“既会游泳的,又会飞的”,加深对交集含义的认识。
(2)第2题,用表达逻辑关系的语言“既…又… ( http: / / www.21cnjy.com )”和“或”提出两个关于集合运算后的元素个数问题,让学生体会如何用生活语言表述两个集合的运算:交集(由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集)和并集(由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集)。【来源:21·世纪·教育·网】
(3)“思考题”渗透利用一 ( http: / / www.21cnjy.com )一对应的思想解决问题的方法。A组和B组的小组赛都需要淘汰15人,都需要进行15场比赛,因此,一共要进行30场比赛。
五、教学建议
1.注意自主探索与有意义的接受学习有机结合
学生对于“重复的人数要减 ( http: / / www.21cnjy.com )去”是有经验的,应充分尊重学生的基础,放手让学生自主探索解决问题的方法。如果学生不能画出维恩图,不必一味让学生“创造”,教师可以用讲授法让学生认识并理解。出示维恩图让学生先独立填写,再汇报交流。同时利用多媒体课件或教具,配合学生汇报直观演示将两个集合圈合并的过程。在汇报交流时,一要注意引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合元素的顺序可以不同”,体会集合元素的无序性。二要让学生说一说图中每一部分所表示的含义,尤其是“两项都参加的”和“参加这两项比赛的”,体会交集和并集的含义。
2.重视多元表征,感悟集合思想
在学生解决“求两个集合的并集的元素个数 ( http: / / www.21cnjy.com )”的问题时,会用到多种方法,如画图示或列算式等。教师应放手让学生尝试解决,并充分展示学生的方法。学生画的图示并不一定是标准的维恩图,只要能清楚地表示出两个集合的关系,教师都应给予充分的肯定。另外,要注重通过语言描述,让学生在图示与算式这两种表征之间进行转换,感受集合的知识。当让学生列式解答时,学生会有多种算法。教师应让学生结合维恩图说一说算式所表示的意思,借助直观,深刻理解维恩图中每一部分的含义,加深对集合知识的理解。例如,当学生列式为9+8-3=14后,让学生结合维恩图说一说求出的是哪一部分,体会两个集合的并集,再说一说这样列式的理由,体会“求两个的并集的基数,就是用两个集合的基数的和减去它们的交集的基数”这一基本方法。再如,学生列式为8-3=5,9+5=14时。让学生说明“8-3表示只参加踢毽比赛的”,在维恩图上指一指是哪两部分相减,体会差集,在说明“9+5表示参加跳绳比赛的加上只参加踢毽比赛的”的同时,在维恩图上指一指是哪两部分相加,体会并集。
3.把握好教学要求
集合思想虽然在小学数学教学中有广泛的渗 ( http: / / www.21cnjy.com )透,但是此内容并不是必须掌握的内容。本单元教学的落脚点不是掌握与集合有关的概念,也不是熟练掌握计算的方法,而是让学生经历探究的过程,在解决问题的过程中理解集合的思想,并获得有价值的数学活动经验。因此,教师在教学中要注意把握好知识的难度和要求,尽量用通俗易懂的语言渗透集合思想。例如,对于集合的术语,如集合,元素、交集、并集等,虽然在教学中可以介绍给学生,但并不需要让学生掌握,只要学生能用自己的语言表达和交流就可以了。教科书中出现的解决问题都是计算运算后的集合(并集或交集)的元素个数,但重点不是熟练计算,而是让学生通过解决此类问题,了解、体会集合概念及运算的道理。另外,教科书中只给出了利用Venn图表示两个集合的交和并的问题,没有出现三个集合的情况。如果学生在解决练习二十三第4题和第6题的时候,尝试用维恩图表示三个集合的运算,教师应给予鼓励和指导。21教育网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网