3.2.1.2古典概型(二)

文档属性

名称 3.2.1.2古典概型(二)
格式 rar
文件大小 20.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2010-03-25 23:43:00

图片预览

文档简介

课件12张PPT。3.2.1 古典概型(二)例4、假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,……,9十个数字中的任意一个。假设一个人完全忘记了自己的储蓄卡密码,问他在自动提款机上随机试一次密码就能取到钱的概率试多少?解:这个人随机试一个密码,相当做1次随机试验,试验的基本事件(所有可能的结果)共有10 000种。由于是假设的随机的试密码,相当于试验的每一个结果试等可能的。所以
P(“能取到钱”)= “能取到钱”所包含的基本事件的个数
10 000 =1/10000=0.0001例5、某种饮料每箱装12听,如果其中有2听不合格,问质检人员从中随机抽取2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的10听分别记作:1,2,……,10,不合格的2听记作a、b,只要检测的2听中有1听不合格,就表示查出了不合格产品。
分为两种情况,1听不合格和2听都不合格。
1听不合格:合格产品从10听中选1听,不合格产品从2听中选1听,所以包含的基本事件数为2x10x2=40
2听都不合格:包含的基本事件数为2。
所以检测出不合格产品这个事件所包含的基本事件数为
40+2=42。因此检测出不合格产品的概率为探究随着检测听数的增加,查出不合格产品的概率怎样变化?为什么质检人员都采用抽查的方法而不采用逐个检查的方法?检测的听数和不合格产品的概率如下表在实际问题中,质检人员一般采用抽查方法而不采用逐个检查的方法的原因有两个:第一可以从抽查的样品中次品出现的情况把握总体中次品出现的情况;第二采用逐个抽查一般是不可能的,也是不现实的。3.2.2 (整数值)随机数的产生1、选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1。
2、选定A1格,按Ctrl+C快捷键,然后选定要随机产生0、1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样我们很快就得到了100个随机产生的0,1,相当于做了100次随机试验。
3、选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数,与就是反面朝上的频数。
4、选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率。例6 天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?解:我们通过设计模拟试验的方法来解决问题,利用计算器或计算机可以产生0到9之间去整数值的随机数,我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,这样可以体现下雨的概率是40%。因为是3天,所以每三天随机数作为一组。例如,产生20组随机数
966 191 925 271 932 812 458 569 683
257 393 027 556 488 730 113 537 989
就相当于作了20次试验。在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两天下雨,他们分别是191,271,932,812,393,即共有5个数。我们得到三天中恰有两天下雨的概率近似为5/20=25%