中小学教育资源及组卷应用平台
16 统计与概率
一、选择题
1.(2024·湖南长沙·中考真题)为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )
A.9.2 B.9.4 C.9.5 D.9.6
【答案】B
【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.
【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,
∴中位数为:9.4,
故选B.
2.(2024·云南·中考真题)甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数(单位:环)和方差如下表所示:
甲 乙 丙 丁
9.9 9.5 8.2 8.5
0.09 0.65 0.16 2.85
根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
【答案】A
【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.
【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,
从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,
故选:A.
3.(2024·江西·中考真题)如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )
A.五月份空气质量为优的天数是16天 B.这组数据的众数是15天
C.这组数据的中位数是15天 D.这组数据的平均数是15天
【答案】D
【分析】根据折线统计图及中位数、众数、平均数的意义逐项判断即可.
【详解】解:观察折线统计图知,五月份空气质量为优的天数是16天,故选项A正确,不符合题意;
15出现了3次,次数最多,即众数是15天,故选项B正确,不符合题意;
把数据按从低到高排列,位于中间的是15,15,即中位数为15天,故选项C正确,不符合题意;
这组数据的平均数为:,故选项D错误,符合题意;
故选:D.
【点睛】本题考查了折线统计图、一组数据的中位数、众数、平均数等知识,掌握以上基础知识是解本题的关键.
4.(2024·辽宁·中考真题)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是( )
A.摸出白球 B.摸出红球 C.摸出绿球 D.摸出黑球
【答案】B
【分析】本题考查了概率,熟练掌握概率公式是解题关键.分别求出摸出四种颜色球的概率,即可得到答案.
【详解】解:A、摸出白球的概率为,不符合题意;
B、摸出红球,符合题意;
C、摸出绿球,不符合题意;
D、摸出黑球,不符合题意;
故选:B.
5.(2024·湖北武汉·中考真题)小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是( )
A.随机事件 B.不可能事件 C.必然事件 D.确定性事件
【答案】A
【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.
【详解】解:两人同时出相同的手势,,这个事件是随机事件,
故选:A.
6.(2024·黑龙江绥化·中考真题)某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:
鞋码
平均每天销售量/双
如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( )
A.平均数 B.中位数 C.众数 D.方差
【答案】C
【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义是解题的关键;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数.
故选:C.
7.(2024·内蒙古赤峰·中考真题)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )
视力 4.7以下 4.7 4.8 4.9 4.9以上
人数 39 41 33 40 47
A.120 B.200 C.6960 D.9600
【答案】D
【分析】本题考查的是统计表,用样本估计总体,求出不低于4.8的人数所占的百分比是解决此题的关键.求出不低于4.8的人数所占的百分比再乘16000即可求出结论.
【详解】解:,
∴视力不低于4.8的人数是9600,
故选:D.
8.(2024·四川达州·中考真题)小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的( )
A.平均数 B.众数 C.中位数 D.方差
【答案】C
【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.
【详解】解:依题意“■”该数据在30~40之间,则这组数据的中位数为,
∴“■”在范围内无论为何值都不影响这组数据的中位数.
故选:C.
9.(2024·内蒙古呼伦贝尔·中考真题)下列说法正确的是( )
A.任意画一个三角形,其内角和是是必然事件
B.调查某批次汽车的抗撞击能力,适宜全面调查.
C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4
D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为,则甲芭蕾舞团的女演员身高更整齐
【答案】D
【分析】本题考查了必然事件,方差的意义,抽样调查与普查,中位数,根据必然事件,中位数,方差的意义,抽样调查与普查逐项分析判断即可.
【详解】A.任意画一个三角形,其内角和是是不可能事件,故原说法错误;
B.调查某批次汽车的抗撞击能力,适宜抽样调查.故原说法错误;
C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是5,故原说法错误
D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为,则甲芭蕾舞团的女演员身高更整齐,故正确,
故选:D.
10.(2024·内蒙古通辽·中考真题)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是( )
A. B. C. D.
【答案】C
【分析】本题主要考查了列表法或树状图法求概率.根据题意,列出表格,可得一共有9种等可能结果,其中两次都摸出白球的有4种,再由概率公式计算,即可求解.
【详解】解:根据题意,列出表格如下:
红 白1 白2
红 (红,红) (白1,红) (白2,红)
白1 (红,白1) (白1,白1) (白2,白1)
白2 (红,白2) (白1,白2) (白2,白2)
一共有9种等可能结果,其中两次都摸出白球的有4种,
所以两次都摸出白球的概率是.
故选:C
11.(2024·广东深圳·中考真题)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )
A. B. C. D.
【答案】D
【分析】本题考查了概率公式.根据概率公式直接得出答案.
【详解】解:二十四个节气中选一个节气,抽到的节气在夏季的有六个,
则抽到的节气在夏季的概率为,
故选:D.
12.(2024·江苏盐城·中考真题)甲、乙两家公司年的利润统计图如下,比较这两家公司的利润增长情况( )
A.甲始终比乙快 B.甲先比乙慢,后比乙快
C.甲始终比乙慢 D.甲先比乙快,后比乙慢
【答案】A
【分析】本题考查了折线统计图,根据折线统计图即可判断求解,看懂折线统计图是解题的关键.
【详解】解:由折线统计图可知,甲公司年利润增长万元,年利润增长万元,乙公司年利润增长万元,年利润增长万元,
∴甲始终比乙快,
故选:.
二、填空题
13.(2024·天津·中考真题)不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为 .
【答案】/0.3
【分析】本题考查了概率公式的应用,熟练掌握概率公式是解题的关键.用绿球的个数除以球的总数即可.
【详解】解:∵不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别,
∴从袋子中随机取出1个球, 它是绿球的概率为,
故答案为:.
14.(2024·湖南长沙·中考真题)为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知 种秧苗长势更整齐(填“甲”、“乙”或“丙”).
【答案】甲
【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】解:∵,
∴甲种秧苗长势更整齐,
故答案为:甲.
15.(2024·湖南长沙·中考真题)某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为 .
【答案】/
【分析】本题考查概率公式,掌握概率的意义是解题的关键.
利用概率公式直接进行计算.
【详解】解:小明家参与抽奖,获得一等奖的概率为,
故答案为:.
16.(2024·黑龙江牡丹江·中考真题)已知一组正整数a,1,b,b,3有唯一众数8,中位数是5,则这一组数据的平均数为 .
【答案】5
【分析】本题考查了众数、平均数和中位数的知识.根据众数、平均数和中位数的概念求解.
【详解】解:∵这组数据有唯一众数8,
∴b为8,
∵中位数是5,
∴a是5,
∴这一组数据的平均数为,
故答案为:5.
17.(2024·四川甘孜·中考真题)某校组织多项活动加强科学教育,八年级(一)班分两批次确定项目组成员,参加“实践探究”活动,第一批次确定了7人,第二批次确定了1名男生、2名女生.现从项目组中随机抽取1人承担联络任务,若抽中男生的概率为,则第一批次确定的人员中,男生为 人.
【答案】5
【分析】题目主要考查概率的计算及一元一次方程的应用,理解题意,根据概率公式列式计算是解题关键.
【详解】解:设第一批次确定的人员中,男生为x人,
根据题意得:,
解得:,
故答案为:5.
18.(2024·云南·中考真题)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:
注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.
若该校共有学生人,则该校喜欢跳绳的学生大约有 人.
【答案】
【分析】本题考查了条形统计图和扇形统计图,用乘以即可求解,看懂统计图是解题的关键.
【详解】解:该校喜欢跳绳的学生大约有人,
故答案为:.
三、解答题
19.(2024·甘肃临夏·中考真题)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了,,,四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.
(1)小临从四张卡片中随机抽取一张,抽中卡片的概率是______;
(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.
【答案】(1)
(2)
【分析】本题考查简单的概率计算,列表法或画树状图法求概率,掌握概率公式和正确的列出表格或画出树状图是解题关键.
(1)直接利用概率公式计算即可;
(2)根据题意列出表格或画出树状图表示出所有等可能的结果,再找出抽取两张卡片内容均为化学变化的结果,最后根据概率公式计算即可.
【详解】(1)解:小临从四张卡片中随机抽取一张,抽中卡片的概率是.
故答案为:;
(2)解:根据题意可列表格如下,
A B C D
A A,B A,C A,D
B B,A B,C B,D
C C,A C,B C,D
D D,A D,B D,C
根据表格可知共有12种等可能的结果,其中抽取两张卡片内容均为化学变化的结果有2种,
∴抽取两张卡片内容均为化学变化的概率为.
20.(2024·黑龙江牡丹江·中考真题)某校为掌握学生对垃圾分类的了解情况,在全校范围内抽取部分学生进行调查问卷,并将收集到的信息进行整理,绘制成如图所示不完整的统计图,其中A为“非常了解”,B为“了解较多”,C为“基本了解”,D为“了解较少”.请你根据图中提供的信息,解答下列问题:
(1)本次调查共抽取了______名学生;
(2)补全条形统计图,并求出扇形统计图中“了解较少”所对应的圆心角度数;
(3)若全校共有1200名学生,请估计全校有多少名学生“非常了解”垃圾分类问题.
【答案】(1)50
(2),图形见详解
(3)480名
【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(1)用A、C、D的总人数除以所占比例即可求解;
(2)先用“了解较少”的占比,用总人数减去A、C、D的人数即可得B的人数,据此即可补全条形统计图;
(3)用样本估算总体即可.
【详解】(1)解:这次被调查的学生人数为:(名);
(2)“了解较少”所对应的圆心角度数为:,
(人)
补全图形如下:
(3)(名),
估计全校有多少名学生“非常了解”垃圾分类问题有480名.
21.(2024·天津·中考真题)为了解某校八年级学生每周参加科学教育的时间(单位:),随机调查了该校八年级名学生,根据统计的结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(1)填空:的值为______,图①中的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;
(2)求统计的这组学生每周参加科学教育的时间数据的平均数;
(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是的人数约为多少?
【答案】(1)
(2)8.36
(3)150人
【分析】本题考查条形统计图、扇形统计图,用样本估计总体,众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
(1)根据的人数和百分比可以求得本次接受调查的学生人数,再由总人数和的人数即可求出m; 根据条形统计图中的数据,可以得到这50个样本数据的众数、中位数;
(2)根据平均数的定义进行解答即可;
(3)在所抽取的样本中,每周参加科学教育的时间是的学生占,用八年级共有学生数乘以即可得到答案.
【详解】(1)解:(人,
,
,
在这组数据中,8出现了17次,次数最多,
众数是8,
将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8,
中位数是,
故答案为:.
(2)
这组数据的平均数是8.36.
(3)在所抽取的样本中,每周参加科学教育的时间是的学生占,
根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是的学生占,有.
估计该校八年级学生每周参加科学教育的时间是的人数约为150.
22.(2024·陕西·中考真题)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次.
(1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________.
(2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率.
【答案】(1)0.3
(2)
【分析】本题考查求频率、画树状图或列表法求概率、概率公式,熟练掌握画树状图或列表法求概率的方法是解题的关键.
(1)根据“频数除以总数等于频率”求解即可;
(2)画出树状图可得,共有25种等可能的结果,其中两次摸出的小球都是红球有9种结果,再利用概率公式求解即可.
【详解】(1)解:由题意得,摸出黄球的频率是,
故答案为:0.3;
(2)解:画树状图得,
共有25种等可能的结果,其中两次摸出的小球都是红球有9种结果,
∴两次摸出的小球都是红球的概率为.
23.(2024·黑龙江绥化·中考真题)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.
请根据统计图中的信息,解答下列问题:
(1)参加本次问卷调查的学生共有______人.
(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.
(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.
【答案】(1)
(2),作图见解析
(3)
【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;
(1)根据组的人数除以占比得出总人数;
(2)根据总人数求得组的人数,进而求得占比,以及补全统计图;
(3)根据列表法或画树状图法求概率,即可求解.
【详解】(1)解:参加本次问卷调查的学生共有(人);
(2)解:A组人数为人
A组所占的百分比为:
补全统计图如图所示,
(3)画树状图法如下图
列表法如下图
A B C D
A
B
C
D
由树状图法或列表法可以看出共有12种结果,它们出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.
∴P(选中的2个社团恰好是B和C).
24.(2024·河北·中考真题)甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.
(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;
(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.
【答案】(1)
(2)填表见解析,
【分析】(1)先分别求解三个代数式当时的值,再利用概率公式计算即可;
(2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.
【详解】(1)解:当时,
,,,
∴取出的卡片上代数式的值为负数的概率为:;
(2)解:补全表格如下:
∴所有等可能的结果数有种,和为单项式的结果数有种,
∴和为单项式的概率为.
【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.
25.(2024·甘肃·中考真题)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.
(1)请用画树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲乙双方公平吗?请说明理由.
【答案】(1)
(2)这个游戏规则对甲乙双方不公平,理由见解析
【分析】本题主要考查了树状图法或列表法求解概率,游戏的公平性:
(1)先画出树状图得到所有等可能性的结果数,再找到两球上的数字之和为奇数的结果数,最后利用概率计算公式求解即可;
(2)同(1)求出乙获胜的概率即可得到结论.
【详解】(1)解:画树状图如下:
由树状图可知,一共有12种等可能性的结果数,其中两球上的数字之和为奇数的结果数有8种,
∴甲获胜的概率为;
(2)解:这个游戏规则对甲乙双方不公平,理由如下:
由(1)中的树状图可知,两球上的数字之和为偶数的结果数有4种,
∴乙获胜的概率为,
∵,
∴甲获胜的概率大于乙获胜的概率,
∴这个游戏规则对甲乙双方不公平.
26.(2024·黑龙江齐齐哈尔·中考真题)为提高学生的环保意识,某校举行了“爱护环境,人人有责”环保知识竞赛,对收集到的数据进行了整理、描述和分析.
【收集数据】随机抽取部分学生的竞赛成绩组成一个样本.
【整理数据】将学生竞赛成绩的样本数据分成四组进行整理.
(满分分,所有竞赛成绩均不低于分)如下表:
组别
成绩(/分)
人数(人)
【描述数据】根据竞赛成绩绘制了如下两幅不完整的统计图.
【分析数据】根据以上信息,解答下列问题:
(1)填空:______,______;
(2)请补全条形统计图;
(3)扇形统计图中,组对应的圆心角的度数是______;
(4)若竞赛成绩分以上(含分)为优秀,请你估计该校参加竞赛的名学生中成绩为优秀的人数.
【答案】(1),;
(2)补图见解析;
(3);
(4).
【分析】()根据组人数及其百分比求出抽取的学生人数,进而可求出的值;
()根据()中的值补图即可;
()用乘以组人数的占比即可求解;
()用乘以分以上(含分)的人数占比即可求解;
本题考查了条形统计图和扇形统计图,统计表,样本估计总体,看懂统计图是解题的关键.
【详解】(1)解:抽取的学生人数为人,
∴,
∴,
故答案为:,;
(2)解:补全条形统计图如下:
(3)解:,
故答案为:;
(4)解:,
答:估计该校参加竞赛的名学生中成绩为优秀的人数大约是人.
27.(2024·内蒙古包头·中考真题)《国家学生体质健康标准(2014年修订)》将九年级男生的立定跳远测试成绩分为四个等级:优秀(),良好(),及格(),不及格(),其中表示测试成绩(单位:).某校为了解本校九年级全体男生立定跳远测试的达标情况,精准找出差距,进行科学合理的工作规划,整理了本校及所在区县九年级全体男生近期一次测试成绩的相关数据,信息如下:
a.本校测试成绩频数(人数)分布表:
等级 优秀 良好 及格 不及格
频数(人数) 40 70 60 30
b.本校测试成绩统计表:
平均数 中位数 优秀率 及格率
222.5 228
c.本校所在区县测试成绩统计表:
平均数 中位数 优秀率 及格率
218.7 223
请根据所给信息,解答下列问题:
(1)求出的值;
(2)本校甲、乙两名同学本次测试成绩在本校排名(从高到低)分别是第100名、第101名,甲同学的测试成绩是,请你计算出乙同学的测试成绩是多少?
(3)请你结合该校所在区县测试成绩,从平均数、中位数、优秀率和及格率四个方面中任选两个,对该校九年级全体男生立定跳远测试的达标情况做出评价,并为该校提出一条合理化建议.
【答案】(1)
(2)乙同学的测试成绩是
(3)见解析
【分析】本题考查的是频率分布表,中位数,平均数的意义.读懂统计图,从统计表中得到必要的信息是解决问题的关键.
(1)先根据本校测试成绩频数(人数)分布表求出本次测试的总人数,利用优秀率成绩为优秀的人数除以总人数即可求解;
(2)根据第100名、第101名成绩的平均值为该校本次测试成绩的中位数,即可求解;
(3)根据优秀率和平均数的意义说明即可.
【详解】(1)解:本次测试的总人数为:(人),
成绩为优秀的人数为:40人,
则优秀率为:;
(2)解:第100名、第101名成绩的平均值为该校本次测试成绩的中位数,中位数为228,
则,
答:乙同学的测试成绩是;
(3)解:本校测试成绩的平均数为222.5,本校所在区县测试成绩平均数为218.7,
本校测试成绩的优秀率为,本校所在区县测试成绩优秀率为,
,
从平均数角度看,该校九年级全体男生立定跳远的平均成绩高于区县水平,整体水平较好;
从优秀率角度看,该校九年级全体男生立定跳远成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的优秀率低于区县水平;
建议:该校在保持学校整体水平的同时,多关注接近优秀的学生,提高优秀成绩的人数.
28.(2024·广东广州·中考真题)善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对,两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):
组 75 78 82 82 84 86 87 88 93 95
组 75 77 80 83 85 86 88 88 92 96
(1)求组同学得分的中位数和众数;
(2)现从、两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.
【答案】(1)组同学得分的中位数为分,众数为分;
(2)
【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.
(1)根据中位数和众数的定义求解即可;
(2)由题意可知,、两组得分超过90分的同学各有2名,画树状图法求出概率即可.
【详解】(1)解:由题意可知,每组学生人数为10人,
中位数为第5、6名同学得分的平均数,
组同学得分的中位数为分,
分出现了两次,次数最多,
众数为分;
(2)解:由题意可知,、两组得分超过90分的同学各有2名,
令组的2名同学为、,组的2名同学为、,
画树状图如下:
由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,
这2名同学恰好来自同一组的概率.
29.(2024·吉林长春·中考真题)某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取名学生对食堂进行满意度评分(满分分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:
a.高中部名学生所评分数的频数分布直方图如下图:(数据分成4组:,,,)
b.高中部名学生所评分数在这一组的是:
c.初中部、高中部各名学生所评分数的平均数、中位数如下:
平均数 中位数
初中部
高中部
根据以上信息,回答下列问题:
(1)表中的值为________;
(2)根据调查前制定的满意度等级划分标准,评分不低于分为“非常满意”.
①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为、,则________;(填“>”“<”或“=”)
②高中部共有名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数.
【答案】(1)
(2)①;②估计其中对食堂“非常满意”的学生人数为人
【分析】(1)由题意知,高中部评分的中位数为第位数的平均数,即,计算求解即可;
(1)①利用中位数进行决策即可;②根据,计算求解即可.
【详解】(1)解:由题意知,高中部评分的中位数为第位数的平均数,即,
故答案为:;
(2)①解:由题意知,初中部评分的中位数为,高中部评分的中位数为,
∴,
故答案为:;
②解:∵,
∴估计其中对食堂“非常满意”的学生人数为人.
【点睛】本题考查了条形统计图,中位数,利用中位数进行决策,用样本估计总体.熟练掌握条形统计图,中位数,利用中位数进行决策,用样本估计总体是解题的关键.
30.(2024·内蒙古呼伦贝尔·中考真题)从一副普通的扑克牌中取出五张牌,它们的牌面数字分别是4,4,5,5,6.
(1)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张,则抽取的这张牌的牌面数字是4的概率是多少?
(2)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张(不放回),再从中随机抽取第二张.请用列表或画树状图的方法,求抽取的这两张牌的牌面数字之和为奇数的概率.
【答案】(1)
(2)
【分析】本题考查的是用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件,解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.
(1)直接用概率公式求解即可;
(2)画树状图,再利用概率公式进行计算即可.
【详解】(1)解:将这五张扑克牌背面朝上,洗匀,从中随机抽取一张,抽取牌面数字是4的概率为:;
(2)解:画树状图,如下,
共有20种等可能事件,其中抽取的这两张牌的牌面数字之和为奇数有12种,
所以抽取的这两张牌的牌面数字之和为奇数的概率为.
31.(2024·内蒙古呼伦贝尔·中考真题)某市某校组织本校学生参加“市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的学生只参加其中一项.为了解各项目参与情况,该校随机调查了部分参加志愿者服务的学生,将调查结果绘制成如下两幅不完整的统计图.
根据统计图信息,解答下列问题:
(1)本次调查的学生共有______人,请补全条形统计图;
(2)在扇形统计图中,求“敬老服务”对应的圆心角的度数;
(3)该校共有2000名学生,若有的学生参加志愿者服务,请你估计参加“文明宣传”项目的学生人数.
【答案】(1)200,画图见解析
(2)
(3)360人
【分析】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体等,解题的关键是:
(1)利用“整理卫生”的人数除以所占百分比求出调查的总人数,然后总人数减去其余各组人数,求出“文明宣传”的人数,然后补图即可;
(2)用乘以“敬老服务”所占百分比即可;
(3)用乘以“文明宣传”所占的百分比即可.
【详解】(1)解:本次调查的学生共有人,
“文明宣传”的人数有人,
补图如下:
故答案为:200;
(2)解:,
∴“敬老服务”对应的圆心角的度数是,
(3)解:,
∴估计参加“文明宣传”项目的学生人数为360人.
32.(2024·江苏苏州·中考真题)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:
根据以上信息,解决下列问题:
(1)将图①中的条形统计图补充完整(画图并标注相应数据);
(2)图②中项目E对应的圆心角的度数为______°;
(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.
【答案】(1)见解析
(2)72
(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人
【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;
(2)用乘以E组所占百分比即可;
(3)用800乘以B组所占百分比即可.
【详解】(1)解:总人数为,
D组人数为,
补图如下:
(2)解:,
故答案为:72;
(3)解:(人).
答:本校七年级800名学生中选择项目B(乒乓球)的人数约为240人.
33.(2024·四川甘孜·中考真题)某校为丰富课后服务内容,计划开设一些社团活动.受时间限制,每位学生只能参加一类社团活动.为了解学生对舞蹈、声乐、人工智能三类社团活动的喜爱情况,随机选取部分学生进行调查,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,回答下列问题:
(1)①此次调查一共随机抽取了______名学生,扇形统计图中圆心角______度;
②补全条形统计图;
(2)若该校共有400名学生喜欢这三类社团活动,请估计喜欢舞蹈社团活动的学生人数.
【答案】(1)①40;54;②见解析
(2)160人
【分析】本题考查条形统计图与扇形统计图相关联,由样本估计总体等知识.由条形统计图和扇形统计图得出必要的信息和数据是解题关键.
(1)①用舞蹈社团的人数除以其所占百分比即可解答;用人工智能社团的人数除以总人数得出其所占比例,再乘以即可;②先求出声乐社团的人数,进而即可补全条形统计图;
(2)用舞蹈社团的人数除以总人数得出其所占比例,再乘以该校总人数即可.
【详解】(1)解:①此次调查一共随机抽取了名学生.
扇形统计图中圆心角.
故答案为:40;54;
②此次调查声乐小组的人数为名,
故补全条形统计图如下:
(2)解:名,
答:估计喜欢舞蹈社团活动的学生有160人.
34.(2024·山东泰安·中考真题)某超市打算购进一批苹果,现从甲、乙两个供应商供应的苹果中各随机抽取10个,测得它们的直径(单位:mm),并制作统计图如下:
根据以上信息,解答下列问题:
(1)
统计量供应商 平均数 中位数 众数
甲 80 80
乙 76
则__________,__________,__________.
(2)苹果直径的方差越小,苹果的大小越整齐,据此判断,__________供应商供应的苹果大小更为整齐.(填“甲”或“乙”)
(3)超市规定直径(含)以上的苹果为大果,超市打算购进甲供应商的苹果2000个,其中,大果约有多少个?
【答案】(1)80,,
(2)甲
(3)600
【分析】本题主要考查了平均数、中位数、众数、方差以及用样本估计总体等知识点,掌握相关统计量的计算方法是解答本题的关键.
(1)分别根据算术平均数,中位数和众数的定义解答即可;
(2)根据方差的意义解答即可;
(3)利用样本估计总体,即用2000乘样本中直径(含)以上所占比例即可.
【详解】(1)解:由题意得:;
把乙的10个苹果的直径从小到大排列,排在中间的两个数分别是79,80,故中位数;
甲10个苹果的直径中,83出现的次数最多,故众数.
故答案为:80,,.
(2)解:甲的方差为:
;
乙的方差为:
,
因为,
所以甲供应商供应的苹果大小更为整齐.
故答案为:甲.
(3)解:(个).
答:大果约有600个.
35.(2024·云南·中考真题)为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆、植物园两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆、植物园、科技馆三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆为,选择植物园为,选择科技馆为,记七年级年级组的选择为,八年级年级组的选择为.
(1)请用列表法或画树状图法中的一种方法,求所有可能出现的结果总数;
(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率.
【答案】(1)见解析
(2)
【分析】本题考查利用列表法或画树状图求概率,解题的关键在于根据题意列表或画树状图.
(1)根据题意列出表格(或画出树状图)即可解题;
(2)根据概率所求情况数与总情况数之比.由表格(或树状图),得到共有6个等可能的结果,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有种,再由概率公式求解即可.
【详解】(1)解:由题意可列表如下:
由表格可知,所有可能出现的结果总数为以上种;
(2)解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有种,
(七年级年级组、八年级年级组选择的研学基地互不相同).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
16 统计与概率
一、选择题
1.(2024·湖南长沙·中考真题)为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )
A.9.2 B.9.4 C.9.5 D.9.6
2.(2024·云南·中考真题)甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数(单位:环)和方差如下表所示:
甲 乙 丙 丁
9.9 9.5 8.2 8.5
0.09 0.65 0.16 2.85
根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )
A.甲 B.乙 C.丙 D.丁
3.(2024·江西·中考真题)如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )
A.五月份空气质量为优的天数是16天 B.这组数据的众数是15天
C.这组数据的中位数是15天 D.这组数据的平均数是15天
4.(2024·辽宁·中考真题)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是( )
A.摸出白球 B.摸出红球 C.摸出绿球 D.摸出黑球
5.(2024·湖北武汉·中考真题)小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是( )
A.随机事件 B.不可能事件 C.必然事件 D.确定性事件
6.(2024·黑龙江绥化·中考真题)某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:
鞋码
平均每天销售量/双
如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( )
A.平均数 B.中位数 C.众数 D.方差
7.(2024·内蒙古赤峰·中考真题)某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是( )
视力 4.7以下 4.7 4.8 4.9 4.9以上
人数 39 41 33 40 47
A.120 B.200 C.6960 D.9600
8.(2024·四川达州·中考真题)小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的( )
A.平均数 B.众数 C.中位数 D.方差
9.(2024·内蒙古呼伦贝尔·中考真题)下列说法正确的是( )
A.任意画一个三角形,其内角和是是必然事件
B.调查某批次汽车的抗撞击能力,适宜全面调查.
C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4
D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为,则甲芭蕾舞团的女演员身高更整齐
10.(2024·内蒙古通辽·中考真题)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是( )
A. B. C. D.
11.(2024·广东深圳·中考真题)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )
A. B. C. D.
12.(2024·江苏盐城·中考真题)甲、乙两家公司年的利润统计图如下,比较这两家公司的利润增长情况( )
A.甲始终比乙快 B.甲先比乙慢,后比乙快
C.甲始终比乙慢 D.甲先比乙快,后比乙慢
二、填空题
13.(2024·天津·中考真题)不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为 .
14.(2024·湖南长沙·中考真题)为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知 种秧苗长势更整齐(填“甲”、“乙”或“丙”).
15.(2024·湖南长沙·中考真题)某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为 .
16.(2024·黑龙江牡丹江·中考真题)已知一组正整数a,1,b,b,3有唯一众数8,中位数是5,则这一组数据的平均数为 .
17.(2024·四川甘孜·中考真题)某校组织多项活动加强科学教育,八年级(一)班分两批次确定项目组成员,参加“实践探究”活动,第一批次确定了7人,第二批次确定了1名男生、2名女生.现从项目组中随机抽取1人承担联络任务,若抽中男生的概率为,则第一批次确定的人员中,男生为 人.
18.(2024·云南·中考真题)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:
注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.
若该校共有学生人,则该校喜欢跳绳的学生大约有 人.
三、解答题
19.(2024·甘肃临夏·中考真题)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了,,,四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.
(1)小临从四张卡片中随机抽取一张,抽中卡片的概率是______;
(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.
20.(2024·黑龙江牡丹江·中考真题)某校为掌握学生对垃圾分类的了解情况,在全校范围内抽取部分学生进行调查问卷,并将收集到的信息进行整理,绘制成如图所示不完整的统计图,其中A为“非常了解”,B为“了解较多”,C为“基本了解”,D为“了解较少”.请你根据图中提供的信息,解答下列问题:
(1)本次调查共抽取了______名学生;
(2)补全条形统计图,并求出扇形统计图中“了解较少”所对应的圆心角度数;
(3)若全校共有1200名学生,请估计全校有多少名学生“非常了解”垃圾分类问题.
21.(2024·天津·中考真题)为了解某校八年级学生每周参加科学教育的时间(单位:),随机调查了该校八年级名学生,根据统计的结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:
(1)填空:的值为______,图①中的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;
(2)求统计的这组学生每周参加科学教育的时间数据的平均数;
(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是的人数约为多少?
22.(2024·陕西·中考真题)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球,这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记下颜色后放回,记作随机摸球一次.
(1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是________.
(2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率.
23.(2024·黑龙江绥化·中考真题)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.
请根据统计图中的信息,解答下列问题:
(1)参加本次问卷调查的学生共有______人.
(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.
(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.
24.(2024·河北·中考真题)甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.
(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;
(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.
25.(2024·甘肃·中考真题)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.
(1)请用画树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲乙双方公平吗?请说明理由.
26.(2024·黑龙江齐齐哈尔·中考真题)为提高学生的环保意识,某校举行了“爱护环境,人人有责”环保知识竞赛,对收集到的数据进行了整理、描述和分析.
【收集数据】随机抽取部分学生的竞赛成绩组成一个样本.
【整理数据】将学生竞赛成绩的样本数据分成四组进行整理.
(满分分,所有竞赛成绩均不低于分)如下表:
组别
成绩(/分)
人数(人)
【描述数据】根据竞赛成绩绘制了如下两幅不完整的统计图.
【分析数据】根据以上信息,解答下列问题:
(1)填空:______,______;
(2)请补全条形统计图;
(3)扇形统计图中,组对应的圆心角的度数是______;
(4)若竞赛成绩分以上(含分)为优秀,请你估计该校参加竞赛的名学生中成绩为优秀的人数.
27.(2024·内蒙古包头·中考真题)《国家学生体质健康标准(2014年修订)》将九年级男生的立定跳远测试成绩分为四个等级:优秀(),良好(),及格(),不及格(),其中表示测试成绩(单位:).某校为了解本校九年级全体男生立定跳远测试的达标情况,精准找出差距,进行科学合理的工作规划,整理了本校及所在区县九年级全体男生近期一次测试成绩的相关数据,信息如下:
a.本校测试成绩频数(人数)分布表:
等级 优秀 良好 及格 不及格
频数(人数) 40 70 60 30
b.本校测试成绩统计表:
平均数 中位数 优秀率 及格率
222.5 228
c.本校所在区县测试成绩统计表:
平均数 中位数 优秀率 及格率
218.7 223
请根据所给信息,解答下列问题:
(1)求出的值;
(2)本校甲、乙两名同学本次测试成绩在本校排名(从高到低)分别是第100名、第101名,甲同学的测试成绩是,请你计算出乙同学的测试成绩是多少?
(3)请你结合该校所在区县测试成绩,从平均数、中位数、优秀率和及格率四个方面中任选两个,对该校九年级全体男生立定跳远测试的达标情况做出评价,并为该校提出一条合理化建议.
28.(2024·广东广州·中考真题)善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对,两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):
组 75 78 82 82 84 86 87 88 93 95
组 75 77 80 83 85 86 88 88 92 96
(1)求组同学得分的中位数和众数;
(2)现从、两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.
29.(2024·吉林长春·中考真题)某校为调研学生对本校食堂的满意度,从初中部和高中部各随机抽取名学生对食堂进行满意度评分(满分分),将收集到的评分数据进行整理、描述和分析.下面给出了部分信息:
a.高中部名学生所评分数的频数分布直方图如下图:(数据分成4组:,,,)
b.高中部名学生所评分数在这一组的是:
c.初中部、高中部各名学生所评分数的平均数、中位数如下:
平均数 中位数
初中部
高中部
根据以上信息,回答下列问题:
(1)表中的值为________;
(2)根据调查前制定的满意度等级划分标准,评分不低于分为“非常满意”.
①在被调查的学生中,设初中部、高中部对食堂“非常满意”的人数分别为、,则________;(填“>”“<”或“=”)
②高中部共有名学生在食堂就餐,估计其中对食堂“非常满意”的学生人数.
30.(2024·内蒙古呼伦贝尔·中考真题)从一副普通的扑克牌中取出五张牌,它们的牌面数字分别是4,4,5,5,6.
(1)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张,则抽取的这张牌的牌面数字是4的概率是多少?
(2)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张(不放回),再从中随机抽取第二张.请用列表或画树状图的方法,求抽取的这两张牌的牌面数字之和为奇数的概率.
31.(2024·内蒙古呼伦贝尔·中考真题)某市某校组织本校学生参加“市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的学生只参加其中一项.为了解各项目参与情况,该校随机调查了部分参加志愿者服务的学生,将调查结果绘制成如下两幅不完整的统计图.
根据统计图信息,解答下列问题:
(1)本次调查的学生共有______人,请补全条形统计图;
(2)在扇形统计图中,求“敬老服务”对应的圆心角的度数;
(3)该校共有2000名学生,若有的学生参加志愿者服务,请你估计参加“文明宣传”项目的学生人数.
32.(2024·江苏苏州·中考真题)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:
根据以上信息,解决下列问题:
(1)将图①中的条形统计图补充完整(画图并标注相应数据);
(2)图②中项目E对应的圆心角的度数为______°;
(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.
33.(2024·四川甘孜·中考真题)某校为丰富课后服务内容,计划开设一些社团活动.受时间限制,每位学生只能参加一类社团活动.为了解学生对舞蹈、声乐、人工智能三类社团活动的喜爱情况,随机选取部分学生进行调查,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,回答下列问题:
(1)①此次调查一共随机抽取了______名学生,扇形统计图中圆心角______度;
②补全条形统计图;
(2)若该校共有400名学生喜欢这三类社团活动,请估计喜欢舞蹈社团活动的学生人数.
34.(2024·山东泰安·中考真题)某超市打算购进一批苹果,现从甲、乙两个供应商供应的苹果中各随机抽取10个,测得它们的直径(单位:mm),并制作统计图如下:
根据以上信息,解答下列问题:
(1)
统计量供应商 平均数 中位数 众数
甲 80 80
乙 76
则__________,__________,__________.
(2)苹果直径的方差越小,苹果的大小越整齐,据此判断,__________供应商供应的苹果大小更为整齐.(填“甲”或“乙”)
(3)超市规定直径(含)以上的苹果为大果,超市打算购进甲供应商的苹果2000个,其中,大果约有多少个?
35.(2024·云南·中考真题)为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆、植物园两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆、植物园、科技馆三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆为,选择植物园为,选择科技馆为,记七年级年级组的选择为,八年级年级组的选择为.
(1)请用列表法或画树状图法中的一种方法,求所有可能出现的结果总数;
(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)