人教版八上数学专题13.3 等腰三角形

文档属性

名称 人教版八上数学专题13.3 等腰三角形
格式 zip
文件大小 897.1KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-07-17 10:04:23

文档简介

中小学教育资源及组卷应用平台
2024--2025学年度人教版数学八年级上册学讲练测讲义
第十三章 轴对称
专题13.3 等腰三角形
课节学习目标
1.了解等腰三角形的概念,掌握等腰三角形的性质;会运用等腰三角形的概念及性质解决相关问题.
2.理解等腰三角形的判定方法.
3.了解等边三角形是特殊的等腰三角形;理解等边三角形的性质与判定。
4.理解含30°锐角的直角三角形的性质;能用含30°锐角的直角三角形性质解决简单的实际问题。
课节知识点解读
知识点1. 等腰三角形的性质及判定
1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.
2.等腰三角形的性质:
(1)等腰三角形的两个底角相等(简写成“等边对等角”).
(2)等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
注意1:解题方法:设辅助未知数法与拼凑法.
注意2:重要的数学思想方法:方程思想、整体思想和转化思想.
3.等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
注意3:等腰三角形的判定方法
(1)根据定义判定;
(2)两个角相等的三角形是等腰三角形.
知识点2. 等边三角形的性质及判定
1.等边三角形的定义:三条边相等的三角形叫做等边三角形.
2. 等边三角形的性质和判定:
性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
判定1. 三个角都相等的三角形是等边三角形。
判定2. 有一个角是60°的等腰三角形是等边三角形。
知识点3. 含30°角的直角三角形的性质
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
课节知识点例题讲析
考点1.等腰三角形的概念
【例题1】如果等腰三角形两边长是6cm和3cm,那么它的周长是(  )
A.9cm B.12cm C.15cm或12cm D.15cm
【答案】D
【解析】当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.
【方法总结】在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
考点2.等腰三角形的性质
【例题2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是(  )
A.65°或50° B.80°或40° C.65°或80° D.50°或80°
【答案】A
【解析】当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.
【方法总结】等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.
考点3.等腰三角形的判定
【例题3】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有(  )
A.5个 B.4个 C.3个 D.2个
【答案】A
【解析】共有5个.(1)∵AB=AC,∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线,∴∠EBC=∠ABC,∠ECB=∠BCD.∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°-36°)=72°.又∵BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD也是等腰三角形.故选A.
【方法总结】确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.
考点4.等边三角形的性质
【例题4】如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.
【答案】见解析。
【解析】因为△ABC三个内角为60°,∠ABE=40°,求出∠EBC的度数,因为BE=DE,所以得到∠EBC=∠D,求出∠D的度数,利用外角性质即可求出∠CED的度数.
解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.
【方法总结】等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.
考点5.等边三角形的判定
【例题5】 等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
【答案】见解析。
【解析】先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.
解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.
【方法总结】判定一个三角形是等边三角形有两种方法:一是证明三角形三个内角相等;二是先证明三角形是等腰三角形,再证明有一个内角等于60°.
考点6.含30°角的直角三角形的性质
【例题6】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是(  )
A.3cm B.6cm C.9cm D.12cm
【答案】D
【解析】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选D.
【方法总结】运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.
深化对课节知识点理解的试题专炼
1. 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
【答案】见解析
【解析】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.
解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x.∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x.∵AB=AC,∴∠ABC=∠BCD=2x.在△ABC中,∠A+∠ABC+∠ACB=180°,∴x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.
【方法总结】利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.
2. 如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,且∠DBC=∠F,求证:EC∥DF.
【答案】见解析
【解析】先由等腰三角形的性质得出∠ABC=∠ACB,根据角平分线定义得到∠DBC=∠ABC,∠ECB=∠ACB,那么∠DBC=∠ECB,再由∠DBC=∠F,等量代换得到∠ECB=∠F,于是根据平行线的判定得出EC∥DF.
证明:∵△ABC为等腰三角形,AB=AC,∴∠ABC=∠ACB.又∵BD、CE为底角的平分线,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.
【方法总结】证明线段的平行关系,主要是通过证明角相等或互补.
3. 如图,点D、E在△ABC的边BC上,AB=AC.
(1)若AD=AE,求证:BD=CE;
(2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.
【答案】见解析
【解析】(1)过A作AG⊥BC于G,根据等腰三角形的性质得出BG=CG,DG=EG即可证明;(2)先证BF=CF,再根据等腰三角形的性质证明.
证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;
(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.
【方法总结】在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.
4. 如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
【答案】见解析
【解析】(1)由△ABC是等腰直角三角形,BE为角平分线,可证得△ABE≌△DBE,即AB=BD,AE=DE,所以△ABD和△ADE均为等腰三角形;由∠C=45°,ED⊥DC,可知△EDC也符合题意;(2)BE是∠ABC的平分线,DE⊥BC,根据角平分线定理可知△ABE关于BE与△DBE对称,可得出BE⊥AD;(3)根据(2),可知△ABE关于BE与△DBE对称,且△DEC为等腰直角三角形,可推出AB+AE=BD+DC=BC=10.
解:(1)△ABC,△ABD,△ADE,△EDC.
(2)AD与BE垂直.证明:由BE为∠ABC的平分线,知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,∴△ABE≌△DBE,∴△ABE沿BE折叠,一定与△DBE重合,∴A、D是对称点,∴AD⊥BE.
(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE.
在Rt△ABE和Rt△DBE中,

∴Rt△ABE≌Rt△DBE(HL),∴AB=BD.
又∵△ABC是等腰直角三角形,∠BAC=90°,
∴∠C=45°.又∵ED⊥BC,
∴△DCE为等腰直角三角形,
∴DE=DC,∴AB+AE=BD+DC=BC=10.
5. 如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=(  )
A.125° B.145° C.175° D.190°
【答案】C
【解析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.
∵CD⊥AB,F为边AC的中点,
∴DF=AC=CF,
又∵CD=CF,
∴CD=DF=CF,
∴△CDF是等边三角形,
∴∠ACD=60°,
∵∠B=50°,
∴∠BCD+∠BDC=130°,
∵∠BCD和∠BDC的角平分线相交于点E,
∴∠DCE+∠CDE=65°,
∴∠CED=115°,
∴∠ACD+∠CED=60°+115°=175°,
故选:C.
6. 如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是(  )
A.20° B.30° C.45° D.60°
【答案】B
【解析】在△ABC中,∵∠B=30°,∠C=90°,
∴∠BAC=180°﹣∠B﹣∠C=60°,
由作图可知MN为AB的中垂线,
∴DA=DB,
∴∠DAB=∠B=30°,
∴∠CAD=∠BAC﹣∠DAB=30°
7. 已知平面直角坐标系中,点A的坐标为(-2,3),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有(  )
A.3个 B.4个 C.5个 D.6
【答案】B
【解析】因为△AOP为等腰三角形,所以可分三类讨论:(1)AO=AP(有一个).此时只要以A为圆心AO长为半径画圆,可知圆与y轴交于O点和另一个点,另一个点就是点P;(2)AO=OP(有两个).此时只要以O为圆心AO长为半径画圆,可知圆与y轴交于两个点,这两个点就是P的两种选择;(3)AP=OP(一个).作AO的中垂线与y轴有一个交点,该交点就是点P的最后一种选择.综上所述,共有4个.故选B.
【方法总结】解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.
8. 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.
【答案】见解析
【解析】根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.
证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.
【方法总结】“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.
9. 如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数.
【答案】见解析
【解析】(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.
(1)证明:∵AB=AC,∴∠B=∠C.
在△BDE和△CEF中,

∴△BDE≌△CEF(SAS),∴DE=EF,∴△DEF是等腰三角形;
(2)解:∵△BDE≌△CEF,∴∠BDE=∠CEF,∴∠BED+∠CEF=∠BED+∠BDE.∵∠B+∠BDE=∠DEF+∠CEF,∴∠B=∠DEF.∵∠A=50°,AB=AC,∴∠B=×(180°-50°)=65°,∴∠DEF=65°.
【方法总结】等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
10. 等腰三角形的一个内角是另一个内角的2倍,求该等腰三角形的顶角的度数.
【答案】见解析
【解析】设该等腰三角形中,小角的度数为x,则大角的度数为2x.
当x为底角时, x +x+ 2x=180°
解得 x=45°,则2x=90°.
当x为顶角时, x +2x+ 2x=180°
解得x =36°.
故该等腰三角形顶角的度数为90°或36°.
方法总结
在等腰三角形中,常用到分类讨论思想,一般有如下情况:(1)在求角度时,未指明底角和顶角;(2)在求三角形周长时,未指明底边和腰;(3)未给定图形时,有时需分锐角三角形和钝角三角形两种情况进行讨论.
11. 如图,在中,,,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若,则AD的长为________.
【答案】2
【解析】据线段垂直平分线的性质得到AD=BD,∠ABD=,求得,即可求出答案.
∵,
∴∠A+∠ABC=,
∵线段AB的垂直平分线分别交AC、AB于点D、E,
∴AD=BD,
∴∠ABD=,
∴,
∵,
∴AD=BD=2CD=2,
故答案为:2.
【点睛】此题考查线段垂直平分线的性质,直角三角形30度角的性质,熟记线段垂直平分线的性质是解题的关键.
12. 如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.
【答案】见解析。
【解析】要证BM=EM,根据等腰三角形的性质可知,证明△BDE为等腰三角形即可.
证明:连接BD,∵在等边△ABC中,D是AC的中点,
∴∠DBC=∠ABC=×60°=30°,∠ACB=60°.
∵CE=CD,∴∠CDE=∠E.
∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形.
又∵DM⊥BC,∴BM=EM.
【方法总结】本题综合考查了等腰和等边三角形的性质,其中“三线合一”的性质是证明线段相等、角相等和线段垂直关系的重要方法.
13. △ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?
【答案】见解析。
【解析】先根据已知条件利用SAS判定△ABM≌△BCN,再根据全等三角形的性质求得∠BQM=∠ABC=60°.
∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.
在△AMB和△BNC中,
∵∴△AMB≌△BNC(SAS),
∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.
【方法总结】等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.
14. 如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.
【答案】见解析。
【解析】(1)∵AB=AC,∴∠C=∠ABC,
∵∠C=36°,∴∠ABC=36°,
∵BD=CD,AB=AC,
∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.
(2)证明:∵BE平分∠ABC,
∴∠ABE=∠CBE=∠ABC,
∵EF∥BC,∴∠FEB=∠CBE,
∴∠FBE=∠FEB,∴FB=FE.
15. 图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.
(1)如图①,线段AN与线段BM是否相等?请说明理由;
(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.
【答案】见解析。
【解析】(1)AN=BM.理由:∵△ACM与△CBN都是等边三角形,∴AC=MC,CN=CB,∠ACM=∠BCN=60°.∴∠MCN=60°,∠ACN=∠MCB.在△ACN和△MCB中,
∵∴△ACN≌△MCB(SAS).
∴AN=BM.
(2)△CEF是等边三角形.证明:∵△ACN≌△MCB,∴∠CAE=∠CMB.在△ACE和△MCF中,∵
∴△ACE≌△MCF(ASA),∴CE=CF.∴△CEF是等边三角形.
【方法总结】等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024--2025学年度人教版数学八年级上册学讲练测讲义
第十三章 轴对称
专题13.3 等腰三角形
课节学习目标
1.了解等腰三角形的概念,掌握等腰三角形的性质;会运用等腰三角形的概念及性质解决相关问题.
2.理解等腰三角形的判定方法.
3.了解等边三角形是特殊的等腰三角形;理解等边三角形的性质与判定。
4.理解含30°锐角的直角三角形的性质;能用含30°锐角的直角三角形性质解决简单的实际问题。
课节知识点解读
知识点1. 等腰三角形的性质及判定
1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.
2.等腰三角形的性质:
(1)等腰三角形的两个底角相等(简写成“等边对等角”).
(2)等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
注意1:解题方法:设辅助未知数法与拼凑法.
注意2:重要的数学思想方法:方程思想、整体思想和转化思想.
3.等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
注意3:等腰三角形的判定方法
(1)根据定义判定;
(2)两个角相等的三角形是等腰三角形.
知识点2. 等边三角形的性质及判定
1.等边三角形的定义:三条边相等的三角形叫做等边三角形.
2. 等边三角形的性质和判定:
性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
判定1. 三个角都相等的三角形是等边三角形。
判定2. 有一个角是60°的等腰三角形是等边三角形。
知识点3. 含30°角的直角三角形的性质
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
课节知识点例题讲析
考点1.等腰三角形的概念
【例题1】如果等腰三角形两边长是6cm和3cm,那么它的周长是(  )
A.9cm B.12cm C.15cm或12cm D.15cm
考点2.等腰三角形的性质
【例题2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是(  )
A.65°或50° B.80°或40° C.65°或80° D.50°或80°
考点3.等腰三角形的判定
【例题3】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有(  )
A.5个 B.4个 C.3个 D.2个
考点4.等边三角形的性质
【例题4】如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.
考点5.等边三角形的判定
【例题5】 等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
考点6.含30°角的直角三角形的性质
【例题6】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是(  )
A.3cm B.6cm C.9cm D.12cm
深化对课节知识点理解的试题专炼
1. 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
2. 如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,且∠DBC=∠F,求证:EC∥DF.
3. 如图,点D、E在△ABC的边BC上,AB=AC.
(1)若AD=AE,求证:BD=CE;
(2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.
4. 如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
5. 如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=(  )
A.125° B.145° C.175° D.190°
6. 如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是(  )
A.20° B.30° C.45° D.60°
7. 已知平面直角坐标系中,点A的坐标为(-2,3),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有(  )
A.3个 B.4个 C.5个 D.6
8. 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.
9. 如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数.
10. 等腰三角形的一个内角是另一个内角的2倍,求该等腰三角形的顶角的度数.
11. 如图,在中,,,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若,则AD的长为________.
12. 如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.
13. △ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?
14. 如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.
15. 图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.
(1)如图①,线段AN与线段BM是否相等?请说明理由;
(2)如图②,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)