中小学教育资源及组卷应用平台
2024--2025学年度人教版数学九年级上册学讲练测讲义
第二十四章 圆
专题24.7 圆单元核心素养达标检测
(试卷满分120分,答题时间120分钟)
一、选择题(本大题有10个小题,每小题3分,共30分)
1.下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
2.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学专著,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为( )
A.26寸 B.25寸 C.13寸 D.寸
3.如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=( )
A.48° B.24° C.22° D.21°
4. 如图,在中,直径与弦相交于点P,连接,若,,则( )
A. B. C. D.
5. 如图,四边形内接于,,.若,,则的度数与的长分别为( )
A. 10°,1 B. 10°, C. 15°,1 D. 15°,
6. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )
A. B. C. D.
7. 如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为( )
A. B. C. D.
8. 工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A. 10cm B. 15cm C. 20cm D. 24cm
9.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )
A.△BPA为等腰三角形
B.AB与PD相互垂直平分
C.点A、B都在以PO为直径的圆上
D.PC为△BPA的边AB上的中线
10. 我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416.如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为,若用圆内接正十二边形作近似估计,可得的估计值为( )
A. B. C. 3 D.
二、填空题(本大题有10个小题,每空3分,共30分)
1.如图,在中,劣弧有 个。
2.已知⊙O的半径为5cm,则圆中最长的弦长为______cm
3.如图,的半径为13,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于点M,N,作直线交于点C,则 .
4.小明很喜欢专研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量的弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为 cm.
5.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若的度数为40°,则的度数是 .
6. 如图,某博览会上有一圆形展示区,在其圆形边缘的点处安装了一台监视器,它的监控角度是,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器_______台.
7. 如图,的圆心O与正方形的中心重合,已知的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为________.
A. B. 2 C. D.
8. 若扇形的圆心角为,半径为,则它的弧长为___________.
9. 如图,在中,的内切圆与分别相切于点,,连接的延长线交于点,则_________.
10.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为 cm2.
三、解答题(6个小题,共60分)
1.(10分)如图,AB是⊙O的直径,=,∠COD=60°.
(1)△AOC是等边三角形吗?请说明理由;
(2)求证:OC∥BD.
2. (10分)已知☉O的半径r=7cm,直线l1 // l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.
3. (10分) 如图,已知是的直径,点为延长线上一点,是的切线,点为切点,且.
(1)求的度数;
(2)若的半径为3,求圆弧的长.
4.(10分)如图,AB为⊙O的直径,C、D为⊙O上的两个点,,连接AD,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)若直径AB=6,求AD的长.
5.(10分)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.
(1)求证:DF是⊙O的切线;
(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.
6. (10分)如图,是的外接圆,D是直径上一点,的平分线交于点E,交于另一点F,.
(1)求证:;
(2)设,垂足为M,若,求的长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024--2025学年度人教版数学九年级上册学讲练测讲义
第二十四章 圆
专题24.7 圆单元核心素养达标检测
(试卷满分120分,答题时间120分钟)
一、选择题(本大题有10个小题,每小题3分,共30分)
1.下列判断正确的个数有( )
①直径是圆中最大的弦;
②长度相等的两条弧一定是等弧;
③半径相等的两个圆是等圆;
④弧分优弧和劣弧;
⑤同一条弦所对的两条弧一定是等弧.
A.1个 B.2个 C.3个 D.4个
【答案】B
【解析】①直径是圆中最大的弦;故①正确,
②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确
③半径相等的两个圆是等圆;故③正确
④弧分优弧、劣弧和半圆,故④不正确
⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.
综上所述,正确的有①③
故选B
2.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学专著,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为( )
A.26寸 B.25寸 C.13寸 D.寸
【答案】A
【解析】设圆心为O,过O作OC⊥AB于C,交⊙O于D,连接OA,
∴AC=AB=×10=5,
设⊙O的半径为r寸,
在Rt△ACO中,OC=r﹣1,OA=r,
则有r2=52+(r﹣1)2,
解得r=13,
∴⊙O的直径为26寸.
3.如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=( )
A.48° B.24° C.22° D.21°
【答案】D
【解析】连接OC、OD,可得∠AOB=∠COD=42°,由圆周角定理即可得∠CED=∠COD=21°.
解:连接OC、OD,
∵AB=CD,∠AOB=42°,
∴∠AOB=∠COD=42°,
∴∠CED=∠COD=21°.
4. 如图,在中,直径与弦相交于点P,连接,若,,则( )
A. B. C. D.
【答案】D
【解析】先根据圆周角定理得出,
再由三角形外角和定理可知,再根据直径所对的圆周角是直角,即,然后利用进而可求出.
【详解】∵,
∴,
∵,
∴,
又∵为直径,即,
∴,
故选:D.
【点睛】主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.
5. 如图,四边形内接于,,.若,,则的度数与的长分别为( )
A. 10°,1 B. 10°, C. 15°,1 D. 15°,
【答案】C
【解析】过点O作于点E,由题意易得,然后可得,,,进而可得,最后问题可求解.
【详解】过点O作于点E,如图所示:
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∵,,,
∴,,,
∴,,,
∴,
∴,
∴;
故选C.
【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.
6. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )
A. B. C. D.
【答案】B
【解析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.
如图,过点OC作OD⊥AB于点D,
∵∠AOB=2×=60°,
∴△OAB是等边三角形,
∴∠AOD=∠BOD=30°,OA=OB=AB=2,AD=BD=AB=1,
∴OD=,
∴阴影部分的面积为,
故选:B.
【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.
7. 如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角形成的扇面,若,,则阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】根据S阴影=S扇形AOD-S扇形BOC求解即可.
S阴影=S扇形AOD-S扇形BOC
=
=
=
=2.25π(m2)
故选:D.
【点睛】本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.
8. 工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A. 10cm B. 15cm C. 20cm D. 24cm
【答案】C
【解析】【分析】连接OA,OE,设OE与AB交于点P,根据,,得四边形ABDC是矩形,根据CD与切于点E,OE为的半径得,,即,,根据边之间的关系得,,在,由勾股定理得,,进行计算可得,即可得这种铁球的直径.
【详解】如图所示,连接OA,OE,设OE与AB交于点P,
∵,,,
∴四边形ABDC是矩形,
∵CD与切于点E,OE为的半径,
∴,,
∴,,
∵AB=CD=16cm,
∴,
∵,
在,由勾股定理得,
解得,,
则这种铁球的直径=,
故选C.
【点睛】本题考查了切线的性质,垂径定理,勾股定理,解题的关键是掌握这些知识点.
9.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )
A.△BPA为等腰三角形
B.AB与PD相互垂直平分
C.点A、B都在以PO为直径的圆上
D.PC为△BPA的边AB上的中线
【答案】B
【解析】根据切线的性质即可求出答案.
(A)∵PA、PB为圆O的切线,
∴PA=PB,
∴△BPA是等腰三角形,故A正确.
(B)由圆的对称性可知:AB⊥PD,但不一定平分,
故B不一定正确.
(C)连接OB、OA,
∵PA、PB为圆O的切线,
∴∠OBP=∠OAP=90°,
∴点A、B、P在以OP为直径的圆上,故C正确.
(D)∵△BPA是等腰三角形,PD⊥AB,
∴PC为△BPA的边AB上的中线,故D正确.
10. 我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416.如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为,若用圆内接正十二边形作近似估计,可得的估计值为( )
A. B. C. 3 D.
【答案】C
【解析】【分析】根据圆内接正多边形的性质可得,根据30度的作对的直角边是斜边的一半可得,根据三角形的面积公式即可求得正十二边形的面积,即可求解.
圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为,设圆的半径为1,如图为其中一个等腰三角形,过点作交于点于点,
∵,
∴,
则,
故正十二边形的面积为,
圆的面积为,
用圆内接正十二边形面积近似估计的面积可得,
故选:C.
【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.
二、填空题(本大题有10个小题,每空3分,共30分)
1.如图,在中,劣弧有 个。
【答案】5
【解析】在中,半径有OA,OB,OC,OD;
直径有AB;
弦有AB,BC;
劣弧有,,,,;
优弧有,,,,。
2.已知⊙O的半径为5cm,则圆中最长的弦长为______cm
【答案】10
【解析】根据直径为圆的最长弦求解试题解析:∵⊙O的半径为5cm
∴⊙O的直径为10cm,即圆中最长的弦长为10cm.
3.如图,的半径为13,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于点M,N,作直线交于点C,则 .
【答案】12
【解析】连接OC、OB,如图,
根据作图可知,OC是线段AB的垂直平分线,
则有BC=AC=AB=10×=5,
又∵圆的半径OB=13,
∴在Rt△BOC中,利用勾股定理可得:
,
故答案为:12.
4.小明很喜欢专研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量的弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为 cm.
【答案】4
【解析】先根据垂径定理的推论得到CD过圆心,AD=BD=3.2cm,设圆心为O,连接OA,如图,设⊙O的半径为Rcm,则OD=(R﹣1.6)cm,利用勾股定理得到(R﹣1.6)2+3.22=R2,然后解方程即可.
解:∵C点的中点,CD⊥AB,
∴CD过圆心,AD=BD=AB=×6.4=3.2(cm),
设圆心为O,连接OA,如图,
设⊙O的半径为Rcm,则OD=(R﹣1.6)cm,
在Rt△OAD中,(R﹣1.6)2+3.22=R2,解得R=4(cm),
所以圆形瓦片所在圆的半径为4cm.故答案为4.
5.如图,已知点C是⊙O的直径AB上的一点,过点C作弦DE,使CD=CO.若的度数为40°,则的度数是 .
【答案】120°.
【解析】连接OD、OE,
∵的度数为40°,∴∠AOD=40°,
∵CD=CO,∴∠ODC=∠AOD=40°,
∵OD=OE,∴∠ODC=∠E=40°,
∴∠DOE=100°,∴∠AOE=60°,∴∠BOE=120°,∴的度数是120°.
6. 如图,某博览会上有一圆形展示区,在其圆形边缘的点处安装了一台监视器,它的监控角度是,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器_______台.
【答案】4
【解析】圆周角定理求出对应的圆心角的度数,利用圆心角的度数即可得解.
∵,
∴对应的圆心角的度数为,
∵,
∴最少需要在圆形边缘上共安装这样的监视器台;
故答案为:4
【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.
7. 如图,的圆心O与正方形的中心重合,已知的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为________.
A. B. 2 C. D.
【答案】
【解析】设正方形四个顶点分别为,连接并延长,交于点,由题意可得,的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.
【详解】设正方形四个顶点分别为,连接并延长,交于点,过点作,如下图:
则的长度为圆上任意一点到正方形边上任意一点距离的最小值,
由题意可得:,
由勾股定理可得:,
∴,
故选:D
【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.
8. 若扇形的圆心角为,半径为,则它的弧长为___________.
【答案】
【解析】根据弧长公式即可求解.
扇形的圆心角为,半径为,
∴它的弧长为,
故答案为:.
【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.
9. 如图,在中,的内切圆与分别相切于点,,连接的延长线交于点,则_________.
【答案】##度
【解析】【分析】如图所示,连接,设交于H,由内切圆的定义结合三角形内角和定理求出,再由切线长定理得到,进而推出是的垂直平分线,即,则.
【详解】如图所示,连接,设交于H,
∵是的内切圆,
∴分别是的角平分线,
∴,
∵,
∴,
∴,
∴,
∵与分别相切于点,,
∴,
又∵,
∴是的垂直平分线,
∴,即,
∴,
故答案为:.
【点睛】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.
10.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为 cm2.
【答案】2.
【解析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.
连接BF,BE,过点A作AT⊥BF于T
∵ABCDEF是正六边形,
∴CB∥EF,AB=AF,∠BAF=120°,
∴S△PEF=S△BEF,
∵AT⊥BE,AB=AF,
∴BT=FT,∠BAT=∠FAT=60°,
∴BT=FT=AB sin60°,
∴BF=2BT=2,
∵∠AFE=120°,∠AFB=∠ABF=30°,
∴∠BFE=90°,
∴S△PEF=S△BEF EF BF22
三、解答题(6个小题,共60分)
1.(10分)如图,AB是⊙O的直径,=,∠COD=60°.
(1)△AOC是等边三角形吗?请说明理由;
(2)求证:OC∥BD.
【答案】见解析。
【解析】(1)△AOC是等边三角形
证明:∵=,
∴∠1=∠COD=60°
∵OA=OC(⊙O的半径),
∴△AOC是等边三角形;
(2)证法一:∵=,
∴OC⊥AD
又∵AB是⊙O的直径,
∴∠ADB=90°,即BD⊥AD
∴OC∥BD…(10分)
证法二:∵=,
∴∠1=∠COD=∠AOD
又∠B=∠AOD
∴∠1=∠B
∴OC∥BD
2. (10分)已知☉O的半径r=7cm,直线l1 // l2,且l1与☉O相切,圆心O到l2的距离为9cm.求l1与l2的距离.
【答案】见解析。
【解析】分类讨论。分l2与l1在圆的同一侧或者两侧来计算两条直线的距离。
(1) l2与l1在圆的同一侧:m=9-7=2 cm
(2)l2与l1在圆的两侧:m=9+7=16 cm
3. (10分) 如图,已知是的直径,点为延长线上一点,是的切线,点为切点,且.
(1)求的度数;
(2)若的半径为3,求圆弧的长.
【答案】(1) (2)
【解析】【分析】(1)证明是等边三角形,得到,从而计算出的度数;
(2)计算出圆弧的圆心角,根据圆弧弧长公式计算出最终的答案.
【详解】(1)如下图,连接AO
∵是的切线
∴
∴
∵
∴
∵
∴
∴
∴
∴是等边三角形
∴
∵
∴
(2)∵
∴
圆弧的长为:
∴圆弧的长为.
【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.
4.(10分)如图,AB为⊙O的直径,C、D为⊙O上的两个点,,连接AD,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)若直径AB=6,求AD的长.
【答案】见解析。
【分析】(1)连接OD,根据已知条件得到∠BOD180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;
(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.
【解析】(1)证明:连接OD,
∵,
∴∠BOD180°=60°,
∵,∴∠EAD=∠DABBOD=30°,
∵OA=OD,∴∠ADO=∠DAB=30°,
∵DE⊥AC,∴∠E=90°,
∴∠EAD+∠EDA=90°,∴∠EDA=60°,
∴∠EDO=∠EDA+∠ADO=90°,
∴OD⊥DE,∴DE是⊙O的切线;
(2)解:连接BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠DAB=30°,AB=6,
∴BDAB=3,
∴AD3.
5. (10分)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.
(1)求证:DF是⊙O的切线;
(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.
【答案】见解析。
【解析】(1)连结OD,根据已知条件可推出△DOA是等边三角形,利用∠ODA=∠C即可证明OD∥BC,进而即可知∠DFC=∠ODF=90°,即可求证;
(2)用含有a和r的式子分别表示出BE和BF的长,根据BF=2BE列出等式即可找到r与a的数量关系.
【解答】(1)证明:连结OD,如图所示:
∵∠DAO=60°,OD=OA,
∴△DOA是等边三角形,
∴∠ODA=∠C=60°,
∴OD∥BC,
又∵∠DFC=90°,
∴∠ODF=90°,
∴OD⊥DF,
即DF是⊙O的切线;
(2)设半径为r,等边△ABC的边长为a,
由(1)可知:AD=r,则CD=a﹣r,BE=a﹣2r
在Rt△CFD中,∠C=60°,CD=a﹣r,
∴CF=,
∴BF=a﹣,
又∵EF是⊙O的切线,
∴△FEB是直角三角形,且∠B=60°,∠EFB=30°,
∴BF=2BE,
∴a﹣(a﹣r)=2(a﹣2r),
解得:a=3r,
即r=,
∴⊙O的半径r与等边△ABC的边长a之间的数量关系为:r=.
6. (10分)如图,是的外接圆,D是直径上一点,的平分线交于点E,交于另一点F,.
(1)求证:;
(2)设,垂足为M,若,求的长.
【答案】(1)见详解 (2).
【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.
(1)由等边对等角得出,由同弧所对的圆周角相等得出,由对顶角相等得出,等量代换得出,由角平分线的定义可得出,由直径所对的圆周角等于可得出,即可得出,即.
(2)由(1)知,,根据等边对等角得出,根据等腰三角形三线合一的性质可得出,的值,进一步求出,,再利用勾股定理即可求出.
【小问1详解】
证明:∵,
∴,
又与都是所对的圆周角,
∴,
∵,
∴,
∵平分,
∴,
∵是直径,
∴,
∴,
故,
即.
【小问2详解】
由(1)知,,
∴,
又,,
∴,,
∴圆的半径,
∴,
在中.
,
∴
即的长为.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)