人教版九上数学专题25.5 概率初步单元核心素养达标检测(原卷+解析卷)

文档属性

名称 人教版九上数学专题25.5 概率初步单元核心素养达标检测(原卷+解析卷)
格式 zip
文件大小 2.3MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-07-17 17:46:37

文档简介

中小学教育资源及组卷应用平台
2024--2025学年度人教版数学九年级上册学讲练测讲义
第二十五章 概率初步
专题25.5 概率初步单元核心素养达标检测
(试卷满分100分,答题时间90分钟)
一、选择题(本大题有8个小题,每小题4分,共32分)
1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球 B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球
2. 下列成语所描述的事件属于不可能事件的是( )
A. 水落石出 B. 水涨船高 C. 水滴石穿 D. 水中捞月
3. 剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )
A. B. C. D.
4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(  )
A. B. C. D.
5.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )
A. B. C. D.
6. 某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为( )
A. B. C. D.
7. 某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是( )
A. B. C. D.
8.某射击运动员在同一条件下射击,结果如下表所示:
射击总次数n
击中靶心的次数m
击中靶心的频率
根据频率的稳定性,这名运动员射击一次击中靶心的概率约是( )
A. B. C. D.
二、填空题(本大题有9个小题,每空3分,共27分)
1. 在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是___________.
2. 一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则_________.
3. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.
4.在张完全相同的卡片上,分别标出,,,,从中随机抽取张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.
5. 某种绿豆在相同条件下发芽试验的结果如下:
每批粒数n 2 5 10 50 100 500 1000 1500 2000 3000
发芽的频数m 2 4 9 44 92 463 928 1396 1866 2794
发芽的频率(精确到0.001) 1.000 0.800 0.900 0.880 0.920 0.926 0.928 0.931 0.933 0.931
这种绿豆发芽的概率的估计值为________(精确到0.01).
6. 为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为______.
7.如图,中,点,,分别为,,的中点,点,,分别为,,的中点,若随机向内投一粒米,则米粒落在图中阴影部分的概率为____.
8.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.
9. 有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是   .
三、解答题(5个小题,共41分)
1. (8分)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品:若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
(1)求该顾客首次摸球中奖的概率;
(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由
2.(9分)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
3.(8分)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有________名学生;
(2)补全折线统计图;
(3)D所对应扇形圆心角的大小为________;
(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
4.(8分)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.
5. (8分)如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是 6, 1,8,转盘乙上的数字分别是 4,5,7(规定:指针恰好停留在分界线上,则重新转一次).
(1)转动转盘,转盘甲指针指向正数的概率是__________;转盘乙指针指向正数的概率是__________.
(2)若同时转动两个转盘,转盘甲指针所指的数字记为a,转盘乙指针所指的数字记为b,请用列表法或树状图法求满足a+b<0的概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024--2025学年度人教版数学九年级上册学讲练测讲义
第二十五章 概率初步
专题25.5 概率初步单元核心素养达标检测
(试卷满分100分,答题时间90分钟)
一、选择题(本大题有8个小题,每小题4分,共32分)
1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球 B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球
【答案】A
【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
A、是必然事件,故本选项符合题意;
B、是随机事件,故本选项不符合题意;
C、是随机事件,故本选项不符合题意;
D、是随机事件,故本选项不符合题意.
故选A.
2. 下列成语所描述的事件属于不可能事件的是( )
A. 水落石出 B. 水涨船高 C. 水滴石穿 D. 水中捞月
【答案】D
【解析】根据不可能事件的定义:在一定条件下一定不会发生的事件是不可能事件,进行逐一判断即可
A、水落石出是必然事件,不符合题意;
B、水涨船高是必然事件,不符合题意;
C、水滴石穿是必然事件,不符合题意;
D、水中捞月是不可能事件,符合题意.
【点睛】本题主要考查了不可能事件,熟知不可能事件的定义是解题的关键.
3. 剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是( )
A. B. C. D.
【答案】C
【解析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.
共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,
∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是,
故选:C.
【点睛】考查轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.
4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(  )
A. B. C. D.
【答案】A
【解析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.
由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:.故选:A.
【点睛】此题主要考查了概率公式,正确理解概率的求法是解题关键.
5.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )
A. B. C. D.
【答案】B
【解析】先画树状图,再根据概率公式计算即可.
设三部影片依次为A、B、C,根据题意,画树状图如下:
故相同的概率为.
故选B.
【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.
6. 某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为( )
A. B. C. D.
【答案】C
【解析】根据概率公式可直接进行求解.
由题意可知小明恰好选中“烹饪”的概率为;
故选C.
【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.
7. 某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是( )
A. B. C. D.
【答案】A
【解析】根据列表法求概率即可求解.
列表如下,
女 女 女 男
女 女,女 女,女 女,男
女 女,女 女,女 女,男
女 女,女 女,女 女,男
男 男,女 男,女 男,女
共有12种等可能结果,其中符合题意的有6种,
∴刚好抽中一名男同学和一名女同学的概率是,
故选:A.
【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键.
8.某射击运动员在同一条件下射击,结果如下表所示:
射击总次数n
击中靶心的次数m
击中靶心的频率
根据频率的稳定性,这名运动员射击一次击中靶心的概率约是( )
A. B. C. D.
【答案】A
【解析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率;
根据表格数据可知:
根据频率稳定在,估计这名运动员射击一次时“击中靶心”的概率是
故选:A.
【点睛】本题考查了利用频率估计概率,解决本题的关键是理解当试验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
二、填空题(本大题有9个小题,每空3分,共27分)
1. 在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是___________.
【答案】##0.7
【解析】根据概率公式进行计算即可.
由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,
∴;
故答案为:.
【点睛】本题考查概率.熟练掌握概率的计算公式,是解题的关键.
2. 一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则_________.
【答案】9
【解析】根据概率公式列分式方程,解方程即可.
从中任意摸出一个球是红球的概率为,

去分母,得,
解得,
经检验是所列分式方程的根,

故答案为:9.
【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.
3. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.
【答案】
【解析】用树状图表示所有情况的结果,然后找出抽取的两张卡片上的图形都是中心对称图形的情况,最后根据概率公式计算即可.
分别用,,,表示等腰三角形,平行四边形,正五边形,圆,画树状图如下:
依题意和由图可知,共有12种等可能结果数,其中两次抽出的图形都是中心对称图形的占2种,
两次抽出图形都是中心对称图形的概率为:.
故答案为.
【点睛】本题考查了树状图法,中心对称图形,解题的关键在于熟练掌握概率公式以及正确理解题意(拿出卡片不放回).
4.在张完全相同的卡片上,分别标出,,,,从中随机抽取张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.
【答案】##
【解析】根据题意列表法求概率即可求解.
列表如下,
共有16种等可能结果,符合题意的有8种,
∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是,
故答案为:.
【点睛】本题考查了列表法求概率,整除,熟练掌握列表法求概率是解题的关键.
5. 某种绿豆在相同条件下发芽试验的结果如下:
每批粒数n 2 5 10 50 100 500 1000 1500 2000 3000
发芽的频数m 2 4 9 44 92 463 928 1396 1866 2794
发芽的频率(精确到0.001) 1.000 0.800 0.900 0.880 0.920 0.926 0.928 0.931 0.933 0.931
这种绿豆发芽的概率的估计值为________(精确到0.01).
【答案】0.93
【解析】根据题意,用频率估计概率即可.
由图表可知,绿豆发芽的概率的估计值0.93,
故答案为:0.93.
【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
6. 为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为______.
【答案】
【解析】根据题意,画出树状图,可得一共有12种等可能结果,其中恰好选中甲和丙的有2种,再根据概率公式计算,即可求解.
根据题意,画出树状图,如下∶
一共有12种等可能结果,其中恰好选中甲和丙的有2种,
所以恰好选中甲和丙的概率为.
故答案为:
【点睛】利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.
7.如图,中,点,,分别为,,的中点,点,,分别为,,的中点,若随机向内投一粒米,则米粒落在图中阴影部分的概率为____.
【答案】
【解析】根据三角形的中位线定理建立面积之间的关系,按规律求解,再根据概率公式进行求解即可.
根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,并且这两个三角形相似,那么第二个△DEF的面积=△ABC的面积
那么第三个△MPN的面积=△DEF的面积=△ABC的面积
∴若随机向内投一粒米,则米粒落在图中阴影部分的概率为: 故答案为:
【点睛】本题考查了三角形的中位线定理,概率公式,解决本题的关键是利用三角形的中位线定理得到第三个三角形的面积与第一个三角形的面积的关系,以及概率公式.
8.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.
【答案】
【解析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.
五根木棒,任意取三根共有10种情况:3、5、8; 3、5、10; 3、5、13; 3、8、10
3、8、13; 3、10、13; 5、10、13; 5、8、10; 5、8、13; 8、10、13其中能组成三角形的有:
①3、8、10,由于8-3<10<8+3,所以能构成三角形;
②5、10、13,由于10-5<13<10+5,所以能构成三角形;
③5、8、10,由于8-5<10<8+5,所以能构成三角形;
④8、10、13,由于10-8<13<10+8,所以能构成三角形;
所以有4种方案符合要求,故能构成三角形的概率是P==,故答案为:.
【点睛】此题考查三角形的三边关系,列举法求事件的概率,列举法求概率的关键是在列举所有情况时考虑要全面,不能重复也不能遗漏.
9. 有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是   .
【答案】
【解析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.
根据题意列表如下:
A B C
A AA BA CA
B AB BB CB
C AC BC CC
共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,
所以P(抽取的两张卡片上的字母相同)==.
【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
三、解答题(5个小题,共41分)
1. (8分)为促进消费,助力经济发展,某商场决定“让利酬宾”,于“五一”期间举办了抽奖促销活动.活动规定:凡在商场消费一定金额的顾客,均可获得一次抽奖机会.抽奖方案如下:从装有大小质地完全相同的1个红球及编号为①②③的3个黄球的袋中,随机摸出1个球,若摸得红球,则中奖,可获得奖品:若摸得黄球,则不中奖.同时,还允许未中奖的顾客将其摸得的球放回袋中,并再往袋中加入1个红球或黄球(它们的大小质地与袋中的4个球完全相同),然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一份.现已知某顾客获得抽奖机会.
(1)求该顾客首次摸球中奖的概率;
(2)假如该顾客首次摸球未中奖,为了有更大机会获得精美礼品,他应往袋中加入哪种颜色的球?说明你的理由
【答案】(1) (2)应往袋中加入黄球,见解析
【解析】【分析】(1)直接由概率公式求解即可;
(2)根据列表法求分别求得加入黄球和红球概率即可求解.
【详解】(1)顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果.
记“首次摸得红球”为事件,则事件发生的结果只有1种,
所以,所以顾客首次摸球中奖的概率为.
(2)他应往袋中加入黄球.
理由如下:
记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:
第二球第一球 红 黄① 黄② 黄③ 新
红 红,黄① 红,黄② 红,黄③ 红,新
黄① 黄①,红 黄①,黄② 黄①,黄③ 黄①,新
黄② 黄②,红 黄②,黄① 黄②,黄③ 黄②,新
黄③ 黄③,红 黄③,黄① 黄③,黄② 黄③,新
新 新,红 新,黄① 新,黄② 新,黄③
共有种等可能结果.
()若往袋中加入的是红球,两球颜色相同的结果共有种,此时该顾客获得精美礼品的概率;
()若往袋中加入的是黄球,两球颜色相同的结果共有种,此时该顾客获得精美礼品的概率;
因为,所以,所作他应往袋中加入黄球.
【点睛】本小题考查简单随机事件的概率等基础知识,考查抽象能力、运算能力、推理能力、应用意识、创新意识等,考查统计与概率思想、模型观念,熟练掌握概率公式是解题的关键.
2.(9分)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).
根据图中信息,请回答下列问题;
(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;
(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;
(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.
【答案】(1)18,6, (2)480人 (3)
【解析】【分析】(1)根据选择“E:其他类”的人数及比例求出总人数,总人数乘以A占的比例即为m,总人数减去A,B,C ,E的人数即为n,360度乘以B占的比例即为文学类书籍对应扇形圆心角;
(2)利用样本估计总体思想求解;
(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.
【详解】(1)参与调查的总人数为:(人),


文学类书籍对应扇形圆心角,
故答案为:18,6,;
(2)解:(人),
因此估计最喜欢阅读政史类书籍的学生人数为480人;
(3)画树状图如下:
由图可知,共有9种等可能的情况,其中甲乙两位同学选择相同类别书籍的情况有2种,
因此甲乙两位同学选择相同类别书籍的概率为:.
【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理.
3.(8分)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有________名学生;
(2)补全折线统计图;
(3)D所对应扇形圆心角的大小为________;
(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
【答案】(1)50;(2)见解析;(3)108°;(4)
【解析】【分析】(1)用B组频数除以所占百分比即可求解;
(2)用50减去A、B、C组频数,求出D组频数,即可补全折线统计图;
(3)用360°乘以D组所占百分比即可求解;
(4)列表得出所有等可能结果,根据概率公式即可求解.
【详解】(1)20÷40%=50(人),
故答案为:50;
(2)50-10-20-5=15(人),
补全折线统计图如图:

(3),
故答案为:;
(4)列表如下:
小明小丽 A B C D
A
B
C
D
由列表可知,一共有16种等可能的结果,他们选择相同主题的结果有4种,
所以P(相同主题).
【点睛】本题考查了折线统计图与扇形统计图,求概率等知识,理解两幅统计图提供的公共信息是解题第(1)(2)(3)步关键,列表得出所有等可能的结果是解题第(4)步关键.
4.(8分)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.
【答案】
【解析】分别使用树状图法或列表法将甲乙两位选手抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也各有3种不同的抽取情况,所有等可能出现的结果有9种,找出两次卡片相同的抽取结果,即可算出概率.
【详解】解法一:画树状图,根据题意,画树状图结果如下:
由树状图可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,
所以甲、乙两位选手演讲的主题人物是同一位航天员的概率.
解法二:用列表法,根据题意,列表结果如下:
A B C
A AA BA CA
B AB BB CB
C AC BC CC
由表格可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,
所以甲、乙两位选手演讲主题人物是同一位航天员的概率.
【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.
5. (8分)如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是 6, 1,8,转盘乙上的数字分别是 4,5,7(规定:指针恰好停留在分界线上,则重新转一次).
(1)转动转盘,转盘甲指针指向正数的概率是__________;转盘乙指针指向正数的概率是__________.
(2)若同时转动两个转盘,转盘甲指针所指的数字记为a,转盘乙指针所指的数字记为b,请用列表法或树状图法求满足a+b<0的概率.
【答案】(1);
(2)满足a+b<0的概率为.
【解析】【分析】(1)直接根据概率公式求解即可;
(2)列表得出所有等可能解果,从中找到符合条件的结果数,再根据概率公式求解即可.
【详解】(1)解:转动转盘,转盘甲指针指向正数的概率是;
转盘乙指针指向正数的概率是.
故答案为:;.
(2)解:列表如下:
乙 甲 -1 -6 8
-4 -5 -10 4
5 4 -1 13
7 6 1 15
由表知,共有9种等可能结果,其中满足a+b<0的有3种结果,
∴满足a+b<0的概率为.
【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)