2024年中考数学真题分类汇编:专题24 动点问题(原卷版+解析版)

文档属性

名称 2024年中考数学真题分类汇编:专题24 动点问题(原卷版+解析版)
格式 zip
文件大小 3.5MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-07-18 10:15:05

文档简介

中小学教育资源及组卷应用平台
2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)
专题24 动点问题
一、选择题
1. (2024四川乐山)如图,在菱形中,,,点P是边上一个动点,在延长线上找一点Q,使得点P和点Q关于点C对称,连接交于点M.当点P从B点运动到C点时,点M的运动路径长为( )
A. B. C. D.
2. (2024四川广元)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A. 5 B. 7 C. D.
3. (2024甘肃临夏)如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为( )
A. B. C. D.
4. (2024甘肃威武)如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为(  )
A. 2 B. 3 C. D.
5. (2024江苏苏州)如图,矩形中,,,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿,向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则的最大值为( )
A. B. C. 2 D. 1
6. (2024黑龙江齐齐哈尔)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为下列图像能反映y与x之间函数关系的是( )
A. B. C. D.
二、填空题
1. (2024江苏连云港)如图,在中,,,.点P在边上,过点P作,垂足为D,过点D作,垂足为F.连接,取的中点E.在点P从点A到点C的运动过程中,点E所经过的路径长为__________.
2. (2024江西省)如图,是的直径,,点C在线段上运动,过点C的弦,将沿翻折交直线于点F,当的长为正整数时,线段的长为______.
3. (2024四川凉山)如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为______
4. (2024黑龙江绥化)如图,已知,点为内部一点,点为射线、点为射线上的两个动点,当的周长最小时,则______.
三、解答题
1. (2024甘肃临夏)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
2. (2024河北省)已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.
(1)当点B与点N重合时,求劣弧的长;
(2)当时,如图2,求点B到的距离,并求此时x的值;
(3)设点O到的距离为d.
①当点A在劣弧上,且过点A的切线与垂直时,求d的值;
②直接写出d的最小值.
3. (2024江苏苏州) 如图,中,,,,,反比例函数的图象与交于点,与交于点E.
(1)求m,k的值;
(2)点P为反比例函数图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作,交y轴于点M,过点P作轴,交于点N,连接,求面积的最大值,并求出此时点P的坐标.
4. (2024黑龙江齐齐哈尔)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.
(1)求抛物线的解析式;
(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;
(3)当时,求点P的坐标;
(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.
5. (2024吉林省)如图,在中,,,,是的角平分线.动点P从点A出发,以的速度沿折线向终点B运动.过点P作,交于点Q,以为边作等边三角形,且点C,E在同侧,设点P的运动时间为,与重合部分图形的面积为.
(1)当点P在线段上运动时,判断的形状(不必证明),并直接写出的长(用含t的代数式表示).
(2)当点E与点C重合时,求t的值.
(3)求S关于t的函数解析式,并写出自变量t的取值范围.
6. (2024山东威海)如图,在菱形中,,,为对角线上一动点,以为一边作,交射线于点,连接.点从点出发,沿方向以每秒的速度运动至点处停止.设的面积为,点的运动时间为秒.
(1)求证:;
(2)求与的函数表达式,并写出自变量的取值范围;
(3)求为何值时,线段的长度最短.
7. (2024天津市)将一个平行四边形纸片放置在平面直角坐标系中,点,点,点在第一象限,且.
(1)填空:如图①,点的坐标为______,点的坐标为______;
(2)若为轴的正半轴上一动点,过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,点的对应点为.设.
①如图②,若直线与边相交于点,当折叠后四边形与重叠部分为五边形时,与相交于点.试用含有的式子表示线段的长,并直接写出的取值范围;
②设折叠后重叠部分的面积为,当时,求的取值范围(直接写出结果即可).
8. (2024四川德阳)如图,抛物线与轴交于点和点,与轴交于点.
(1)求抛物线的解析式;
(2)当时,求的函数值的取值范围;
(3)将拋物线的顶点向下平移个单位长度得到点,点为抛物线的对称轴上一动点,求的最小值.
9. (2024四川南充)如图,正方形边长为,点E为对角线上一点,,点P在边上以速度由点A向点B运动,同时点Q在边上以的速度由点C向点B运动,设运动时间为t秒().
(1)求证:.
(2)当是直角三角形时,求t的值.
(3)连接,当时,求的面积.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)
专题24 动点问题
一、选择题
1. (2024四川乐山)如图,在菱形中,,,点P是边上一个动点,在延长线上找一点Q,使得点P和点Q关于点C对称,连接交于点M.当点P从B点运动到C点时,点M的运动路径长为( )
A. B. C. D.
【答案】B
【解析】该题主要考查了菱形的性质,垂直平分线的性质和判定,全等三角形的性质和判定等知识点,解题的关键是掌握以上点M的运动路径.
过点C作交于点H,根据,四边形是菱形,,算出,得出,垂直平分,再证明,得出,证明垂直平分,点M在上运动,根据解直角三角形 .即可求解.
【详解】解:过点C作交于点H,
∵,四边形是菱形,,
∴,,
∴,
∴,
∴,
∴,
∴垂直平分,
∵点P和点Q关于点C对称,
∴,
∵,
∴,
∴,
∴垂直平分,
∴点M在上运动,
当点P与点B重合时,点M位于点,
此时,∵,四边形是菱形,,
∴,
∴.
故点M的运动路径长为.
故选:B.
2. (2024四川广元)如图①,在中,,点P从点A出发沿A→C→B以1的速度匀速运动至点B,图②是点P运动时,的面积随时间x(s)变化的函数图象,则该三角形的斜边的长为( )
A. 5 B. 7 C. D.
【答案】A
【解析】本题考查根据函数图象获取信息,完全平方公式,勾股定理,
由图象可知,面积最大值为6,此时当点P运动到点C,得到,由图象可知, 根据勾股定理,结合完全平方公式即可求解.
【详解】解:由图象可知,面积最大值为6
由题意可得,当点P运动到点C时,的面积最大,
∴,即,
由图象可知,当时,,此时点P运动到点B,
∴,
∵,
∴,
∴.
故选:A
3. (2024甘肃临夏)如图1,矩形中,为其对角线,一动点从出发,沿着的路径行进,过点作,垂足为.设点的运动路程为,为,与的函数图象如图2,则的长为( )
A. B. C. D.
【答案】B
【解析】本题考查了动点问题的函数图象,根据图象得出信息是解题的关键.
根据函数的图象与坐标的关系确定的长,再根据矩形性质及勾股定理列方程求解.
由图象得:,当时,,此时点P在边上,
设此时,则,,
在中,,
即:,
解得:,

故选:B.
4. (2024甘肃威武)如图1,动点P从菱形的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,的长为y,y与x的函数图象如图2所示,当点P运动到中点时,的长为(  )
A. 2 B. 3 C. D.
【答案】C
【解析】结合图象,得到当时,,当点P运动到点B时,,根据菱形的性质,得,继而得到,当点P运动到中点时,的长为,解得即可.
本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.
【详解】结合图象,得到当时,,
当点P运动到点B时,,
根据菱形的性质,得,
故,
当点P运动到中点时,的长为,
故选C.
5. (2024江苏苏州)如图,矩形中,,,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿,向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则的最大值为( )
A. B. C. 2 D. 1
【答案】D
【解析】本题主要考查了矩形的性质、动点轨迹、与圆有关的位置关系等知识,根据矩形的性质以及直角三角形斜边中线的性质确定G的轨迹是本题解题的关键.
连接,交于点,取中点,连接,根据直角三角形斜边中线的性质,可以得出的轨迹,从而求出的最大值.
【详解】解:连接,交于点,取中点,连接,如图所示:
∵四边形是矩形,
∴,,,
∴在中,,
∴,
∵,

在与中,


,,共线,
,是中点,
∴在中,,
的轨迹为以为圆心,为半径即为直径的圆弧.
∴的最大值为的长,即.
故选:D.
6. (2024黑龙江齐齐哈尔)如图,在等腰中,,,动点E,F同时从点A出发,分别沿射线和射线的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接,以为边向下做正方形,设点E运动的路程为,正方形和等腰重合部分的面积为下列图像能反映y与x之间函数关系的是( )
A. B. C. D.
【答案】A
【解析】本题考查动态问题与函数图象,能够明确y与x分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当与重合时,及当时图象的走势,和当时图象的走势即可得到答案.
【详解】当与重合时,设,由题可得:
∴,,
在中,由勾股定理可得:,
∴,
∴,
∴当时,,
∵,
∴图象为开口向上的抛物线的一部分,
当在下方时,设,由题可得:
∴,,
∵,,
∴,
∴,
∴,
∴,
∴当时,,
∵,
∴图象为开口向下的抛物线的一部分,
综上所述:A正确,
故选:A.
二、填空题
1. (2024江苏连云港)如图,在中,,,.点P在边上,过点P作,垂足为D,过点D作,垂足为F.连接,取的中点E.在点P从点A到点C的运动过程中,点E所经过的路径长为__________.
【答案】##
【解析】本题考查含30度角的直角三角形,一次函数与几何的综合应用,矩形的判定和性质,两点间的距离,以为原点,建立如图所示的坐标系,设,则,利用含30度角的直角三角形的性质,求出点的坐标,得到点在直线上运动,求出点分别与重合时,点的坐标,利用两点间的距离公式进行求解即可.
【详解】解:以为原点,建立如图所示的坐标系,设,则,
则:,
∵,
∴,
∵,
∴,
∴,
∴,
过点作,则:,
∴,
∵,,,
∴四边形为矩形,
∴,
∴,
∵为的中点,
∴,
令,
则:,
∴点在直线上运动,
当点与重合时,,此时,
当点与重合时,,此时,
∴点E所经过的路径长为;
故答案为:.
2. (2024江西省)如图,是的直径,,点C在线段上运动,过点C的弦,将沿翻折交直线于点F,当的长为正整数时,线段的长为______.
【答案】或或2
【解析】本题考查了垂径定理,勾股定理,折叠的性质,根据,可得或2,利用勾股定理进行解答即可,进行分类讨论是解题的关键.
【详解】为直径,为弦,

当的长为正整数时,或2,
当时,即为直径,
将沿翻折交直线于点F,此时与点重合,
故;
当时,且在点在线段之间,
如图,连接,
此时,





当时,且点在线段之间,连接,
同理可得,

综上,可得线段的长为或或2,
故答案为:或或2.
3. (2024四川凉山)如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为______
【答案】
【解析】【分析】记直线与x,y轴分别交于点A,K,连接;由直线解析式可求得点A、K的坐标,从而得均是等腰直角三角形,由相切及勾股定理得:,由,则当最小时,最小,点P与点K重合,此时最小值为,由勾股定理求得的最小值,从而求得结果.
【详解】解:记直线与x,y轴分别交于点A,K,连接,
当,,当,即,
解得:,
即;
而,
∴,
∴均是等腰直角三角形,
∴,
∴,
∵与相切,
∴,
∴,
∵,
∴当最小时即最小,
∴当时,取得最小值,
即点P与点K重合,此时最小值为,
在中,由勾股定理得:,
∴,
∴最小值为.
【点睛】本题考查了圆的切线的性质,勾股定理,一次函数与坐标轴的交点问题,垂线段最短,正确添加辅助线是解题的关键.
4. (2024黑龙江绥化)如图,已知,点为内部一点,点为射线、点为射线上的两个动点,当的周长最小时,则______.
【答案】##度
【解析】本题考查了轴对称最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作点P关于,的对称点.连接.则当,是与,的交点时,的周长最短,根据对称的性质结合等腰三角形的性质即可求解.
【详解】作关于,的对称点.连接.则当,是与,的交点时,的周长最短,连接,
关于对称,
∴,
同理,,,
,,
是等腰三角形.

故答案为:.
三、解答题
1. (2024甘肃临夏)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
【答案】(1)见解析;(2);(3)
【解析】【分析】本题考查矩形的性质,正方形的性质,勾股定理,相似三角形的判定和性质,熟练掌握相关知识点,构造相似三角形,是解题的关键:
(1)根据矩形的性质,结合同角的余角,求出,即可得证;
(2)延长交于点,证明,得到,再证明,求出的长,进而求出的长;
(3)设正方形的边长为,延长交于点,证明,得到,进而得到,勾股定理求出,进而求出的长,即可得出结果.
【详解】解:(1)∵矩形,
∴,
∴,
∵,
∴,
∴,
∴;
(2)延长交于点,
∵矩形,
∴,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
∴;
(3)设正方形的边长为,则:,
延长交于点,
∵正方形,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴.
2. (2024河北省)已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.
(1)当点B与点N重合时,求劣弧的长;
(2)当时,如图2,求点B到的距离,并求此时x的值;
(3)设点O到的距离为d.
①当点A在劣弧上,且过点A的切线与垂直时,求d的值;
②直接写出d的最小值.
【答案】(1)
(2)点B到的距离为;
(3)①;②
【解析】【分析】(1)如图,连接,,先证明为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;
(2)过作于,过作于,连接,证明四边形是矩形,可得,,再结合勾股定理可得答案;
(3)①如图,由过点A的切线与垂直,可得过圆心,过作于,过作于,而,可得四边形为矩形,可得,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当为中点时,过作于,过作于, ,此时最短,如图,过作于,而,证明,求解,再结合等角的三角函数可得答案.
【小问1详解】
解:如图,连接,,
∵的半径为3,,
∴,
∴为等边三角形,
∴,
∴的长为;
【小问2详解】
解:过作于,过作于,连接,
∵,
∴,
∴四边形是矩形,
∴,,
∵,,
∴,而,
∴,
∴点B到的距离为;
∵,,
∴,
∴,
∴;
【小问3详解】
解:①如图,∵过点A的切线与垂直,
∴过圆心,
过作于,过作于,而,
∴四边形为矩形,
∴,
∵,,
∴,
∴,
∴,
∴,即;
②如图,当为中点时,
过作于,过作于,
∴,
∴,此时最短,
如图,过作于,而,
∵为中点,则,
∴由(2)可得,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
设,则,
∴,
解得:(不符合题意的根舍去),
∴的最小值为.
【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.
3. (2024江苏苏州) 如图,中,,,,,反比例函数的图象与交于点,与交于点E.
(1)求m,k的值;
(2)点P为反比例函数图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作,交y轴于点M,过点P作轴,交于点N,连接,求面积的最大值,并求出此时点P的坐标.
【答案】(1),
(2)最大值是,此时
【解析】【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:
(1)先求出B的坐标,然后利用待定系数法求出直线的函数表达式,把D的坐标代入直线的函数表达式求出m,再把D的坐标代入反比例函数表达式求出k即可;
(2)延长交y轴于点Q,交于点L.利用等腰三角形的判定与性质可得出,设点P的坐标为,,则可求出,然后利用二次函数的性质求解即可.
【小问1详解】
解: ,,

又,


点.
设直线的函数表达式为,
将,代入,得,
解得,
∴直线的函数表达式为.
将点代入,得.

将代入,得.
【小问2详解】
解:延长交y轴于点Q,交于点L.
,,

轴,
,.




设点P的坐标为,,则,.


当时,有最大值,此时.
4. (2024黑龙江齐齐哈尔)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.
(1)求抛物线的解析式;
(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;
(3)当时,求点P的坐标;
(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.
【答案】(1)
(2)
(3)
(4)
【解析】【分析】本题主要考查了求函数解析式、二次函数与几何的综合等知识点,掌握数形结合思想成为解题的关键.
(1)先根据题意确定点A、C的坐标,然后运用待定系数法求解即可;
(2)分三种情况分别画出图形,然后根据等腰三角形的定义以及坐标与图形即可解答;
(3)先证明可得,设,则,可得,即,求得可得m的值,进而求得点P的坐标;
(4)如图:将线段向右平移单位得到,即四边形是平行四边形,可得,即,作关于对称轴的点,则,由两点间的距离公式可得,再根据三角形的三边关系可得即可解答.
【小问1详解】
解:∵直线与x轴交于点A,与y轴交于点C,
∴当时,,即;当时,,即;
∵,
∴设抛物线的解析式为,
把代入可得:,解得:,
∴,
∴抛物线的解析式为:.
【小问2详解】
解:∵,,
∴,
∴,
如图:当,
∴,即;
如图:当,
∴,即;
如图:当,
∴,即;
综上,点D的坐标为.
【小问3详解】
解:如图:∵轴,
∴,
∵轴,
∴,
∵,
∴,
∴,
∵设,则,
∴,
∴,解得:(负值舍去),
当时,,
∴.
【小问4详解】
解: ∵抛物线的解析式为:,
∴抛物线的对称轴为:直线,
如图:将线段向右平移单位得到,
∴四边形是平行四边形,
∴,即,
作关于对称轴的点,则
∴,
∵,
∴的最小值为.
故答案为.
5. (2024吉林省)如图,在中,,,,是的角平分线.动点P从点A出发,以的速度沿折线向终点B运动.过点P作,交于点Q,以为边作等边三角形,且点C,E在同侧,设点P的运动时间为,与重合部分图形的面积为.
(1)当点P在线段上运动时,判断的形状(不必证明),并直接写出的长(用含t的代数式表示).
(2)当点E与点C重合时,求t的值.
(3)求S关于t的函数解析式,并写出自变量t的取值范围.
【答案】(1)等腰三角形,
(2)
(3)
【解析】【分析】(1)过点Q作于点H,根据“平行线+角平分线”即可得到,由,得到,解得到;
(2)由为等边三角形得到,而,则,故,解得;
(3)当点P在上,点E在上,重合部分为,过点P作于点G,,则,此时;当点P在上,点E在延长线上时,记与交于点F,此时重合部分为四边形,此时,因此,故可得,此时;当点P在上,重合部分为, 此时,,解直角三角形得,故,此时,再综上即可求解.
【小问1详解】
解:过点Q作于点H,由题意得:
∵,,
∴,
∵平分,
∴,
∵,
∴,
∴,
∴,
∴为等腰三角形,
∵,
∴,
∴在中,;
【小问2详解】
解:如图,
∵为等边三角形,
∴,
由(1)得,
∴,
即,
∴;
【小问3详解】
解:当点P在上,点E在上,重合部分为,过点P作于点G,
∵,
∴,
∵是等边三角形,
∴,
∴,
由(2)知当点E与点C重合时,,
∴;
当点P在上,点E在延长线上时,记与交于点F,此时重合部分为四边形,如图,
∵是等边三角形,
∴,
而,
∴,
∴,
∴,
当点P与点D重合时,在中,,
∴,
∴;
当点P在上,重合部分为,如图,
∵,
由上知,
∴,
∴此时,
∴,
∵是等边三角形,
∴,
∴,
∴,
∵,
∴,
∴当点P与点B重合时,,
解得:,
∴,
综上所述:.
【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.
6. (2024山东威海)如图,在菱形中,,,为对角线上一动点,以为一边作,交射线于点,连接.点从点出发,沿方向以每秒的速度运动至点处停止.设的面积为,点的运动时间为秒.
(1)求证:;
(2)求与的函数表达式,并写出自变量的取值范围;
(3)求为何值时,线段的长度最短.
【答案】(1)证明见解析;
(2);
(3).
【解析】【分析】()设与相交于点,证明,可得,,利用三角形外角性质可得,即得,即可求证;
()过点作于,解直角三角形得到,,可得,由等腰三角形三线合一可得,即可由三角形面积公式得到与的函数表达式,最后由,可得自变量的取值范围;
()证明为等边三角形,可得,可知线段的长度最短,即的长度最短,当时,取最短,又由菱形的性质可得为等边三角形,利用三线合一求出即可求解;
本题考查了菱形的性质,全等三角形的判定和性质,三角形的外角性质,解直角三角形,求二次函数解析式,等腰三角形的性质,等边三角形的判定和性质,垂线段最短,掌握菱形的性质及等边三角形的判定和性质是解题的关键.
【小问1详解】
证明:设与相交于点,
∵四边形为菱形,
∴,,,

∴,
在和中,

∴,
∴,,
∵,
又∵,
∴,
∴,
∴;
【小问2详解】
解:过点作于,则,
∵,
∴,
∵四边形为菱形,,
∴,,
即,
∵,
∴,,
∴,
∴,
∴,
∵,
∴,
∴;
【小问3详解】
解:∵,,
∴,
∵,
∴为等边三角形,
∴,
∴,
∴线段的长度最短,即的长度最短,当时,取最短,如图,
∵四边形是菱形,
∴,
∵,
∴为等边三角形,
∴,
∵,
∴,
∴,
∴当时,线段的长度最短.
7. (2024天津市)将一个平行四边形纸片放置在平面直角坐标系中,点,点,点在第一象限,且.
(1)填空:如图①,点的坐标为______,点的坐标为______;
(2)若为轴的正半轴上一动点,过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,点的对应点为.设.
①如图②,若直线与边相交于点,当折叠后四边形与重叠部分为五边形时,与相交于点.试用含有的式子表示线段的长,并直接写出的取值范围;
②设折叠后重叠部分的面积为,当时,求的取值范围(直接写出结果即可).
【答案】(1)
(2)①;②
【解析】【分析】(1)根据平行四边形的性质,得出结合勾股定理,即可作答.
(2)①由折叠得,,再证明是等边三角形,运用线段的和差关系列式化简,,考虑当与点重合时,和当与点B重合时,分别作图,得出的取值范围,即可作答.
②根据①的结论,根据解直角三角形的性质得出,再分别以时,时,,分别作图,运用数形结合思路列式计算,即可作答.
【小问1详解】
解:如图:过点C作
∵四边形是平行四边形,,









故答案为:,
【小问2详解】
解:①∵过点作直线轴,沿直线折叠该纸片,折叠后点的对应点落在轴的正半轴上,
∴,,




∵四边形为平行四边形,
∴,,
∴是等边三角形



∴;
当与点重合时,
此时与的交点为E与A重合,
如图:当与点B重合时,
此时与的交点为E与B重合,
∴的取值范围为;
②如图:过点C作
由(1)得出,
∴,

当时,
∴,开口向上,对称轴直线
∴在时,随着的增大而增大
∴;
当时,如图:
∴,随着的增大而增大
∴在时;在时;
∴当时,
∵当时,过点E作,如图:
∵由①得出是等边三角形,
∴,
∴,


∴开口向下,在时,有最大值
∴在时,

则在时,;
当时,如图,
∴,随着的增大而减小
∴在时,则把分别代入
得出,
∴在时,
综上:
【点睛】本题考查了平行四边形的性质,解直角三角形的性质,折叠性质,二次函数的图象性质,正确掌握相关性质内容是解题的关键.
8. (2024四川德阳)如图,抛物线与轴交于点和点,与轴交于点.
(1)求抛物线的解析式;
(2)当时,求的函数值的取值范围;
(3)将拋物线的顶点向下平移个单位长度得到点,点为抛物线的对称轴上一动点,求的最小值.
【答案】(1)
(2)
(3)的最小值为:
【解析】【分析】(1)直接利用待定系数法求解二次函数的解析式即可;
(2)求解的对称轴为直线,而,再利用二次函数的性质可得答案;
(3)求解,,可得,求解直线为,及,证明在直线上,如图,过作于,连接,过作于,可得,,证明,可得,可得,再进一步求解即可.
【小问1详解】
解:∵抛物线与轴交于点,
∴,
解得:,
∴抛物线的解析式为:;
【小问2详解】
解:∵的对称轴为直线,而,
∴函数最小值为:,
当时,,
当时,,
∴函数值的范围为:;
【小问3详解】
解:∵,
当时,,
∴,
当时,
解得:,,
∴,
∴,
设直线为,
∴,
∴,
∴直线为,
∵拋物线的顶点向下平移个单位长度得到点,而顶点为,
∴,
∴在直线上,
如图,过作于,连接,过作于,
∵,,
∴,,
∵对称轴与轴平行,
∴,
∴,
∴,
由抛物线的对称性可得:,,
∴,
当三点共线时取等号,
∴,
∴,
∴,
即的最小值为:.
【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解线段和的最小值,锐角三角函数的应用,做出合适的辅助线是解本题的关键.
9. (2024四川南充)如图,正方形边长为,点E为对角线上一点,,点P在边上以速度由点A向点B运动,同时点Q在边上以的速度由点C向点B运动,设运动时间为t秒().
(1)求证:.
(2)当是直角三角形时,求t的值.
(3)连接,当时,求的面积.
【答案】(1)见解析 (2)秒或2秒 (3)
【解析】【分析】(1)根据正方形性质,得到,再题意得到,从而得到;
(2)利用题目中的条件,分别用t表示、、,再分别讨论当、和时,利用勾股定理构造方程求出t即可;
(3)过点A作,交的延长线于点F,连接交于点G.由此得到,由已知得到进而得到,由题意,则,再依次证明、,得到,从而证明,即是等腰直角三角形.则,再用求出的面积.
【小问1详解】
证明:四边形是正方形,



【小问2详解】
解:过点E作于点M,过点E作于点N.
由题意知,

∴,


由已知,

,即,
,即,
,即.
①当时,有.
即,整理得.
解得(不合题意,舍去).
②当时,有.
即,整理得,解得.
③当时,有.
即,整理得,该方程无实数解.
综上所述,当是直角三角形时,t的值为秒或2秒.
【小问3详解】
解:过点A作,交的延长线于点F,连接交于点G.


又,








即,
是等腰直角三角形.

【点睛】本题考查了正方形的性质、相似三角形的性质与判定、正切定义以及勾股定理.解答过程中,灵活的利用勾股定理构造方程、根据题意找到相似三角形是解题关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录