山东省泰安市2023-2024学年度高二下学期期末考试数学试题(图片版含答案)

文档属性

名称 山东省泰安市2023-2024学年度高二下学期期末考试数学试题(图片版含答案)
格式 doc
文件大小 4.3MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2024-07-21 08:36:35

图片预览

文档简介

2025届第二学期期末测试
高二数学试卷
本试题考试时间120分钟,满分150分。
1答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。
2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。在此处键入公式。如需改动,
用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,满分40分。每小题只有一个选项符合题目要求。
1.已知集合A={-1,0,1,2},B={xx>0},则下列结论不正确的是()
A.1∈A∩B
B.O∈A∩B
C.2)sAnB
D.xx>0=AUB
2.关于x的不等式(ax-1)a(-小
c(
(引》
3。某同学喜爱球类和游泳运动.在暑假期间,该同学上午去打球的概率为;·若该同学上午不去打球,则下午一定
去游泳;若上午去打球,则下午去游泳的概率为.已知该同学在某天下午去游了泳,则上午打球的概率为()
A.3
B.
3
D.2
4.下列说法中,正确的个数为()
①样本相关系数的绝对值大小可以反映成对样本数据之间线性相关的程度;
②用不同的模型拟合同一组数据,则残差平方和越小的模型拟合的效果越好;
③随机变量5服从正态分布N(,o2),若P(5<3)=0.8,则P(1<5<3)=0.3;
④机变量X服从二一项分布8B,p小,若方差D(X)-子则P(X=)高
A.1个
B.2个
C.3个
D.4个
5.已知a=e1-l,b=g,c=lh1.l,则()
A.cB.aC.cD.a6.若一个四位数的各位数字之和为4,则称该四位数为“F数”,这样的“F数”有()
A.17个
B.19个
C.20个
D.21个
7.已知函数f(x)=e2aw-3lnx,若f(x)>x3-2ax恒成立,则实数a的取值范围为()
第1页
A.0,3)
B.3,)
c.(0,3
D.2,to)
2e
2e
8.设动直线x=1s2)与函数-方x,8C)=nx的图象分别交于点M,N,已知n2<子,则N的最小
值与最大值之积为()
A.2-In2
B.
+ln22-ln2)
8
C.1-In2
D.1-h2
二、多项选择题:本题共3小题,每小题6分,满分18分。
9.已知正实数a,b,c,且a>b>C,x,以,2为自然数,则满足x,+,y+三>0恒成立的x,八,2可以是()
a-b b-c c-a
A.x=1,y=1,z=4
B.x=1,y=2,z=5
C.x=2,y=2,z=7
D.x=1,y=3,z=9
10.玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为A,“第一次取得
白球”为A,,“第二次取得黑球”为B,,“第二次取得白球”为B,,则()
A.P(AB )=P(A2B2
B.P(AB2 )=P(A,B)
C.P(B 4)+P(B2 A)=1
D.P(B2 A)+P(B 4)>1
11.设定义在R上的函数f(x),g(x)的导函数分别为f'(x),g'(x),若f(x+2)+g(2-x)=2,f'(x)=g'(x+2)且y=g(x+1)
为偶函数,则下列说法中正确的是()
A.g'1)=0
B.g(2)+g(3)+g(4)=0
C.g(x)的图象关于x=3对称
D.函数f(x)为周期函数,且周期为4
三、填空题:本题共3小题,每小题5分,满分15分。
12.若函数f(x)=x3-3x在区间(a,6-a)上有最小值,则实数a的取值范围是_
13.设a、b、m(m>0)为整数,若a和b被m除得的余数相同,则称a和b对模m同余,记为a三b(modm);已知
a=C+C+兮C++c+记.b=a(od10),则清足条件的正整数6中,最小的两位数是
2
10
14.切比雪夫不等式是19世纪俄国数学家切比雪夫(1821.5~1894.12)在研究统计规律时发现的,其内容是:对于任
一随机变量X,若其数学期望E(X)和方差D(X)均存在,则对任意正实数6,有P(x-E(X62
该不等式可以对事件|x-E(X)Kε的概率作出估计.在数字通信中,信号是由数字“0”和“1”组成的序列,现连续
发射信号次,每次发射信号“0”和“1”是等可能的记发射信号“1”的次数为随机变量X,为了至少有98%的
把握使发射信号“1”的频率在区间(0.4,0.6)内,估计信号发射次数n的值至少为
第2页
同课章节目录