22.1 一元二次方程
双基演练
1.方程(x+3)(x+4)=5,化成一般形式是________.
2.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是_________.
3.已知方程x2-x-m=0有整数根,则整数m=________.(填上一个你认为正确的答案)
4.根据题意列出方程:有一面积为54m2(设正方形的边长为m)的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,这个正方形的边长是多少?设正方形的边长为xm,请列出你求解的方程__________.
5.如果两个连续奇数的和是323,求这两个数,如果设其中一个奇数为x,你能列出求解x的方程吗?______________.
6.如图,在宽为20m,长30m的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500m2,若设路宽为xm,则可列方程为:_________.
7.如果关于x的方程(m-3)-x+3=0是关于x的一元二次方程,那么m的值为( )
A.±3 B.3 C.-3 D.都不对
8.以-2为根的一元二次方程是( )
A.x2+2x-x=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=0
9.若ax2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( )
A.a>-2 B.a<-2 C.a>-2且a≠0 D.a>
10.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是( )
A.x(x+1)=182 B.x(x-1)=182
C.2x(x+1)=182 D.x(x-1)=182×2
能力提升
1.若关于x的方程(m+3)+(m-5)x+5=0是一元二次方程,试求m的值,并计算这个方程的各项系数之和.
2.求方程x2+3=2x-4的二次项系数,一次项系数及常数项的积.
3.若关于x的方程(k2-4)x2+x+5=0是一元二次方程,求k的取值范围.
4.若α是方程x2-5x+1=0的一个根,求α2+的值.
聚焦中考
1.(2007。潍坊)关于的一元二次方程的一个根为1,则实数的值是( )
A. B.或 C. D.
2.(2006。辽宁十一市)一个三角形的两边长为3和6,第三边的边长是方程的根,则这个三角形的周长是( )
A.11 B.11或13 C.13 D.11和13
3.(2006。辽宁十一市)如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.(部分参考数据:,,)
答案:
1.x2+7x+7=0 2.k≠3 3.2等 4.(x+5)(x+2)=54
5.x(x+2)=323或x(x-2)=323
6.(30-x)(20-x)=500 7.C 8.D 9.C 10.B
11.解:依题意:m2-7=2且m+3≠0,解得m=3.
原方程可化为:6x2-2x+5=0,
所以各项系数之和为6+(-2)+5=9.
点拨:抓住一元二次方程的定义,可求出m的值,相应的二次项系数为6,一次项系数为-2,常数项为5,问题得以解决.
12.解:原方程可化为:x2-2x+7=0.
二次项系数为,一次项系数为-2,常数项为7.
它们的积为×(-2)×7=-28.
点拨:题目综合了一元二次方程的一般形式和二次根式的乘法,一定得先化为一般形式.
13.解:依题意,解得x≥1且k≠2.
点拨:根据题意,二次项系数(k2-4)应不为零,且题中的二次根式中被开方数应为非负数,综合考虑以上两个条件即可解决问题,由k2-4≠0可知k≠±2.但-2已被k≥1排除在外.
14.解:依题意,α2-5α+1=0,则α≠0.方程两边同时除以α,得α-5+=0,
所以α+=5,两边同时平方,得(α+)2=25,α2++2=25,所以α2+=23.
点拨:依据方程的根的定义,可以得到关于a的等式.
15. C 16. C
17.解法(1):由题意转化为右图,设道路宽为米(没画出图形不扣分)
根据题意,
可列出方程为
整理得
解得(舍去),
答:道路宽为米
解法(2):由题意转化为右图,设道路宽为米,根据题意列方程得:
整理得:
解得:,(舍去)
答:道路宽应是米
22.1一元二次方程
教学内容
本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
知识技能
探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
数学思考
在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
解决问题
培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:一元二次方程的定义、各项系数的辨别,根的作用.
难点:根的作用的理解.
关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
情境引入
【问题情境】
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形? 问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?
【活动方略】
教师演示课件,给出题目.
学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.
【设计意图】
由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.
探索新知
【活动方略】
学生活动:请口答下面问题.
(1)上面几个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
【设计意图】
主体活动,探索一元二次方程的定义及其相关概念.
范例点击
将方程化成一元二次方程的一般形式,并指出各项系数.
解:去括号得
,
移项,合并同类项,得一元二次方程的一般形式
.
其中二次项系数是3,一次项系数是-8,常数项是-10.
【活动方略】
学生活动:
学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.
教师活动:
在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).
【设计意图】
进一步巩固一元二次方程的基本概念.
例2 猜测方程的解是什么?
【活动方略】
学生活动:
学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.
教师活动:
教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:
使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).
【设计意图】
探究一元二次方程根的概念以及作用.
反馈练习
课本P32 练习1,2 课本P33 练习1、2题
补充习题:
1.将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
2.你能根据所学过的知识解出下列方程的解吗?
(1); (2).
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
应用拓展
例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
例4:有人解这样一个方程.
解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?
由得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.
【活动方略】
教师活动:操作投影,将例3、例4显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.
小结作业
1.问题:本节课你学到了什么知识?从中得到了什么启发?
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用;
(3)一元二次方程根的概念以及作用
2.作业:课本P34 习题22.1 第1、2题
【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。
课件20张PPT。第二十二章 一元二次方程22.1 二元一次方程 主 页学习方式说明
按顺序学习,可利用鼠标控制进程。
从右侧或上方导航栏中选择内容,进行学习。
电子教案可查看配套教案,课后练习可查看配套练习。
目标呈现知识技能
探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。
数学思考
在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。
解决问题
培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.教材分析 重点
一元二次方程的定义、各项系数的辨别,根的作用 。
难点
根的作用的理解 。
关键
通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念 情境引入 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?情境引入 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?(1)上面几个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?探索新知(1)都只含一个未知数x;
(2)它们的最高次数都是2次的;
(3)都有等号,是方程 探索新知 像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.范例点击范例点击使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).教材P32 练习1,2 课本P33 练习1、2题反馈练习拓展提高拓展提高本节课你学到了什么知识?从中得到了什么启发?小结作业教材P34 习题22.1 第1、2题小结作业双基演练 能力提升聚焦中考