22.2 降次-解一元二次方程资源包(5)

文档属性

名称 22.2 降次-解一元二次方程资源包(5)
格式 rar
文件大小 1.1MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2009-09-20 16:15:00

文档简介

22.2降次——解一元二次方程(5)同步练习
双基演练
1.分解因式:
(1)x2-4x=_________; (2)x-2-x(x-2)=________
(3)m2-9=________; (4)(x+1)2-16=________
2.方程(2x+1)(x-5)=0的解是_________
3.方程2x(x-2)=3(x-2)的解是___________
4.方程(x-1)(x-2)=0的两根为x1·x2,且x1>x2,则x1-2x2的值等于_______
5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24.
6.方程x2+2ax-b2+a2=0的解为__________.
7.若(2x+3y)2+3(2x+3y)-4=0,则2x+3y的值为_________.
8.方程x(x+1)(x-2)=0的根是( )
A.-1,2 B.1,-2 C.0,-1,2 D.0,1,2
9.若关于x的一元二次方程的根分别为-5,7,则该方程可以为( )
A.(x+5)(x-7)=0 B.(x-5)(x+7)=0
C.(x+5)(x+7)=0 D.(x-5)(x-7)=0
10.已知方程4x2-3x=0,下列说法正确的是( )
A.只有一个根x= B.只有一个根x=0
C.有两个根x1=0,x2= D.有两个根x1=0,x2=-
11.解方程2(5x-1)2=3(5x-1)的最适当的方法是( )
A.直接开平方法 B.配方法 C.公式法 D.分解因式法
12.方程(x+4)(x-5)=1的根为( )
A.x=-4 B.x=5 C.x1=-4,x2=5 D.以上结论都不对
13.用适当的方法解下列方程.
(1)x2-2x-2=0 (2)(y-5)(y+7)=0
(3)x(2x-3)=(3x+2)(2x-3) (4)(x-1)2-2(x2-1)=0
(5)2x2+1=2x (6)2(t-1)2+t=1
能力提升
14.(x2+y2-1)2=4,则x2+y2=_______.
15.方程x2=│x│的根是__________.
16.方程2x(x-3)=7(3-x)的根是( )
A.x=3 B.x= C.x1=3,x2= D.x1=3,x2=-
17.实数a、b满足(a+b)2+a+b-2=0,则(a+b)2的值为( )
A.4 B.1 C.-2或1 D.4或1
18.阅读下题的解答过程,请判断是否有错,若有错误请你在其右边写出正确的解答.
已知:m是关于x的方程mx-2x+m=0的一个根,求m的值.
解:把x=m代入原方程,化简得m3=m,两边同除以m,得m2=1,
∴m=1,把m=1代入原方程检验可知:m=1符合题意.
答:m的值是1.
19.若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48
(1)求3※5的值;
(2)求x※x+2※x-2※4=0中x的值;
(3)若无论x是什么数,总有a※x=x,求a的值.
作用.
聚焦中考
20、(2006.南宁)方程的解为 .
21、(2006.内江)方程x(x+1)=3(x+1)的解的情况是( )
A.x=-1 B.x=3 C. D.以上答案都不对
22、(2006.兰州)在实数范围内定义一种运算“*”,其规则为,根据这个规则,方程的解为 。
23、(2006。北京海淀)已知下列n(n为正整数)个关于x的一元二次方程:

(1)请解上述一元二次方程<1>、<2>、<3>、
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可。
答案:
1.略 2.x1=,x2=5 3.x1=2,x2= 4.0 5.-3或2,-6或5
6.x1=-a-b,x2=-a+b 7.-4或1 8.C 9.A 10.C 11.D 12.D
13.(1)x=1±;(2)y1=5,y2=-7;(3)x1=,x2=-1;
(4)x1=-3,x2=1;(5)x=;(6)t1=1,t2= 
14.3 15.0,±1 16.D 17.D
18.有错,正确的解答为:把x=m代入原方程,化简得m3-m=0,
∴m(m+1)(m-1)=0,
∴m=0或m+1=0或m-1=0,
∴m1=0,m2=-1,m3=1,
将m的三个值代入方程检验,均符合题意,
故m的值是0,-1,1.
19.(1)3※5=4×3×5=60,
(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,
∴x1=2,x2=-4,
(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,
∴a=.
20.x1=0,x2=1  21.C   22.或;
23. 解:(1)<1>,所以
<2>,所以
<3>,所以
……
,所以
22.2降次——解一元二次方程(5)
教学内容
本节课主要学习用因式分解法解一元二次方程。
教学目标
知识技能
1.应用分解因式法解一些一元二次方程.
2.能根据具体一元二次方程的特征,灵活选择方程的解法.
数学思考
体会“降次”化归的思想。
解决问题
 能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.
情感态度
使学生知道分解因式法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度.
重难点、关键
重点:应用分解因式法解一元二次方程.
难点:灵活应用各种分解因式的方法解一元二次方程.
关键:让学生通过比较解一元二次方程的多种方法,感悟用因式分解法使解题简便.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
复习引入
解下列方程.
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解.
【设计意图】
复习前面学过的一元二次方程的解法,为学习本节内容作好铺垫。
探索新知
【问题】
仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?
(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
【活动方略】
  在学生解决问题的基础上引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据。 
上面两个方程中都没有常数项;左边都可以因式分解:
2x2+x=x(2x+1),3x2+6x=3x(x+2)
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-.
(2)3x=0或x+2=0,所以x1=0,x2=-2.
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
归纳:利用因式分解使方程化为两个一次式乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫作因式分解法.
【设计意图】
引导学生探索利用因式分解解方程的方法,感受因式分解的作用以及能够解方程的依据.
【探究】
通过解下列方程,你能发现在解一元二次方程的过程中需要注意什么?
(1);
(2);
(3);
(4).
【活动方略】
学生活动:
四个学生进行板演,其余的同学独立解决,然后针对板演的情况让学生讨论、分析可能出现的问题.
对于方程(1),若把(x-2)看作一个整体,方程可变形为(x-2)(x+1)=0;
方程(2)经过整理得到,然后利用平方差公式分解因式;
方程(3)的右边分解因式后变为,然后整体移项得到,把(2x-1)看作一个整体提公因式分解即可;
方程(4)把方程右边移到左边,利用平方差公式分解即可.
教师活动:
在学生交流的过程中,教师注重对上述方程的多种解法的讨论,比如方程(1)可以首先去括号,然后利用公式法和配方法;方程(3)可以去括号、移项、合并然后运用公式法或配方法;方程(4)可以利用完全平方公式展开,然后移项合并,再利用配方法或公式法.
在学生解决问题的基础上,对比配方法、公式法、因式分解法引导学生作以下归纳:
(1)配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有的一元二次方程,因式分解法用于某些一元二次方程.
(2)解一元二次方程的基本思路是:将二次方程化为一次方程,即降次.
【设计意图】
主体探究、灵活运用各种方法解方程,培养学生思维的灵活性.
【应用】
例:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为

你能根据上述规律求出物体经过多少秒回到地面吗?
【活动方略】
学生活动:
学生首先独立思考,自主探索,然后交流
教师活动:
在学生解决问题的过程中鼓励学生运用多种方法解方程,然后让学生体会不同方法间的区别,找到解方程的最佳方法,体会因式分解法的简洁性.
【设计意图】
应用所学知识解答实际问题,培养学生的应用意识.
反馈练习
教材P45 练习第1、2题
补充练习
解下列方程.
1.12(2-x)2-9=0 2.x2+x(x-5)=0
  【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
拓展提高
 例1:我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.
解(1)∵x2-3x-4=(x-4)(x+1)
∴(x-4)(x+1)=0
∴x-4=0或x+1=0
∴x1=4,x2=-1
(2)∵x2-7x+6=(x-6)(x-1)
∴(x-6)(x-1)=0
∴x-6=0或x-1=0
∴x1=6,x2=1
(3)∵x2+4x-5=(x+5)(x-1)
∴(x+5)(x-1)=0
∴x+5=0或x-1=0
∴x1=-5,x2=1
上面这种方法,我们把它称为十字相乘法.
例2.已知9a2-4b2=0,求代数式的值.
分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.
解:原式=
∵9a2-4b2=0 ∴(3a+2b)(3a-2b)=0
3a+2b=0或3a-2b=0,
a=-b或a=b
当a=-b时,原式=-=3
当a=b时,原式=-3.
例2:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.
解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.
∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0
     a<-2
∵ax+3>0即ax>-3
   ∴x<-
∴所求不等式的解集为x<-
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
应用提高、拓展创新,培养学生的应用意识和创新能力.
小结作业
1.问题:本节课学到了哪些知识?有什么体会?
本节课应掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)三种方法(配方法、公式法、因式分解法)的联系与区别:
联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.
②公式法是由配方法推导而得到.
③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.
区别:①配方法要先配方,再开方求根.
②公式法直接利用公式求根.
③因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0。
2.作业:课本P45 习题22.2   第5、8、10题
 【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
课件17张PPT。第二十二章一元二次方程22.2降次—解一元二次方程(5) 主  页学习方式说明
按顺序学习,可利用鼠标控制进程。
从右侧或上方导航栏中选择内容,进行学习。
电子教案可查看配套教案,课后练习可查看配套练习(含答案)。
目标呈现教材分析复习引入探索新知   仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?
  (1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?探索新知探索新知反馈练习拓展提高拓展提高本节课学到了哪些知识?有什么体会?小结作业教材P45 习题22.2 
第5、8、10题小结作业双基演练 能力提升聚焦中考