22.2实际问题与一元二次方程(4)
双基演练
1.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费);超过3km以后,每增加1km,加收2.4元(不足1km按1km计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程( ).
A.正好8km B.最多8km C.至少8km D.正好7km
2.一辆在公路上行驶的汽车,它行驶的路程s(m)与时间t(s)之间的函数关系是:s=10t+3t2,那么行驶200m需要多长时间?
3.一名跳水运动员进行10m跳台跳水训练,在正常情况下,运动员必须在距水面5m以前完成规定的动作,并且调整好入水姿势,否则就容易出现失误,根据经验,运动员起跳后的时间t(s)与运动员距离水面的高度h(m)满足关系式:h=10+2.5t-5t2,那么运动员最多有多长时间完成规定动作?
4.以大约与水平成45°角的方向,向斜上方抛出标枪,抛出的距离s(单位:m)与标枪出手的速度v(单位:m/s)之间大致有如下关系:s=+2
如果抛出40m,那么标枪出手时的速度是________(精确到0.1)
5.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下:
时间t(s)
1
2
3
4
……
距离s(m)
2
8
18
32
……
写出用t表示s的关系式为_______.
6.甲、乙两人绕城而行,甲绕城一周需3小时,现两人同时同地出发,背向而行,乙自遇甲后,再行4小时,才能到达原出发点,求乙绕城一周需多长时间?
能力提升
1.一个小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.
(1)小球滚动了多少时间?
(2)平均每秒小球的运动速度减少多少?
(3)小球滚动到5m时约用了多少时间(精确到0.1s)?
2.某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里,如果军船和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,最早何时能侦察到?如果不能,请说明理由.
聚焦中考
1.(2008。南昌市)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?
2.(2008。浙江省宁波市)2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.
(1)求A地经杭州湾跨海大桥到宁波港的路程.
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?
(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?
答案:
1.B
2.解:依题意:10t+3t2=200.整理,得3t2+10t-200=0.
解得x1=-10(舍去),x2=.
答:行驶200m需要s.
点拨:同学在日常的学习中都习惯于公式s=vt,实际生活中,任何物体的运动速度都不是恒定不变的,而是随着时间的变化而变化,题目中给出了s与t之间的函数关系,求当s=200时t的值.
3.解:依题意:10+2.5t-5t2=5,
整理,得5t2-2.5t-5=0,即t2-t-1=0.
解得x1=≈1.28,x2=≈-0.78舍去,
所以运动员最多有约1.28s的时间完成规定动作.
点拨:把h=5代入h与t的关系式,求出t的值即可.
4.19.3m/s 5.s=2t2
6.分析:本题属行程问题,掌握行程问题的一系列规律,主要是应用s=vt公式.
解:设乙需x小时,则相遇前时间为(x-4)小时,依题意,得=1.
解方程,得x1=6,x2=-2(舍去).
经检验,x2=6,x2=-2都是原方程的根,但x2=-2不符合题意,应舍去.
点拨:应舍去不符合题意的解.
7.(1)小球滚动的平均速度==5(m/s)
小球滚动的时间:=4(s)
(2)=2.5(m/s)
(3)小球滚动到5m时约用了xs 平均速度==
依题意,得:x·=5,整理得:x2-8x+4=0
解得:x=4±2,所以x=4-2
8.能.设侦察船最早由B出发经过x小时侦察到军舰,则(90-30x)2+(20x)2=502
整理,得:13x2-54x+56=0,即(13x-28)(x-2)=0,x1=2,x2=2,
∴最早再过2小时能侦察到.
9.解一:设乙同学的速度为米/秒,则甲同学的速度为米/秒, 1分
根据题意,得, 3分
解得. 4分
经检验,是方程的解,且符合题意. 5分
甲同学所用的时间为:(秒), 6分
乙同学所用的时间为:(秒). 7分
,乙同学获胜. 8分
解二:设甲同学所用的时间为秒,乙同学所用的时间为秒, 1分
根据题意,得 3分
解得 6分
经检验,,是方程组的解,且符合题意.
,乙同学获胜. 8分
10.解:(1)设地经杭州湾跨海大桥到宁波港的路程为千米,
由题意得, 2分
解得.
地经杭州湾跨海大桥到宁波港的路程为180千米. 4分
(2)(元),
该车货物从地经杭州湾跨海大桥到宁波港的运输费用为380元. 6分
(3)设这批货物有车,
由题意得, 8分
整理得,
解得,(不合题意,舍去), 9分
这批货物有8车. 10分
22.3实际问题与一元二次方程(4)
教学内容
本节课主要学习建立一元二次方程的数学模型解决匀变速运动问题。
教学目标
知识技能
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
数学思考
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
解决问题
通过解决匀变速问题,学会将实际应用问题转化为数学问题,发展实践应用意识.
情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
重难点、关键
重点:列一元二次方程解有关匀变速问题的应用题
难点:发现匀变速问题中的等量关系,建立一元二次方程的数学模型
关键:理解匀变速运动中有关物理量的关系,根据匀变速问题中的等量关系列方程。
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
复习引入
路程、速度和时间三者的关系是什么?
某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间?
【活动方略】
教师演示课件,给出题目.
学生口答,老师点评。
【设计意图】
复习基本的行程问题,掌握其数量关系,为继续学习建立一元二次方程的数学模型解匀变速运动问题作好铺垫.
探索新知
【问题情境】
一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车.
(1)从刹车到停车用了多少时间?
(2)从刹车到停车平均每秒车速减少多少?
(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)?
分析:(1)刚刹车时时速还是20m/s,以后逐渐减少,停车时时速为0.因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为=10m/s,那么根据:路程=速度×时间,便可求出所求的时间.
(2)很明显,刚要刹车时车速为20m/s,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可.
(3)设刹车后汽车滑行到15m时约用除以xs.由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m的平均速度,再根据:路程=速度×时间,便可求出x的值.
解:(1)从刹车到停车所用的路程是25m;从刹车到停车的平均车速是=10(m/s)
那么从刹车到停车所用的时间是=2.5(s)
(2)从刹车到停车车速的减少值是20-0=20
从刹车到停车每秒平均车速减少值是=8(m/s)
(3)设刹车后汽车滑行到15m时约用了xs,这时车速为(20-8x)m/s
则这段路程内的平均车速为=(20-4x)m/s
所以x(20-4x)=15 整理得:4x2-20x+15=0
解方程:得x=
x1≈4.08(不合,舍去),x2≈0.9(s)
答:刹车后汽车行驶到15m时约用0.9s.
【思考】
刹车后汽车行驶20m时用多少时间?(精确到0.1秒)
【活动方略】
学生分组、讨论解答。选代表展示解答过程,并讲解解题过程和应注意问题.
教师演示问题,简介匀变速运动各物理量的关系,诱导解答,总结规律。
【设计意图】
使学生通过解题,理解各物理量的关系,掌握解题方法,丰富解题经验.
反馈练习
一个小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.
(1)小球滚动了多少时间?
(2)平均每秒小球的运动速度减少多少?
(3)小球滚动到5m时约用了多少时间(精确到0.1s)?
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对所学知识的掌握情况.
应用拓展
例:如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.
(1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)
分析:(1)因为依题意可知△ABC是等腰直角三角形,△DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长.
(2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在Rt△DEF中,由勾股定理即可求.
解:(1)连结DF,则DF⊥BC
∵AB⊥BC,AB=BC=200海里.
∴AC=AB=200海里,∠C=45°
∴CD=AC=100海里 DF=CF,DF=CD
∴DF=CF=CD=×100=100(海里)
所以,小岛D和小岛F相距100海里.
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,
EF=AB+BC-(AB+BE)-CF=(300-2x)海里
在Rt△DEF中,根据勾股定理可得方程
x2=1002+(300-2x)2
整理,得3x2-1200x+100000=0
解这个方程,得:x1=200-≈118.4
x2=200+(不合题意,舍去)
所以,相遇时补给船大约航行了118.4海里..
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
使学生充分体会行程问题的数量关系,运用路程=速度×时间,建立一元二次方程的数学模型,进一步提升学生对这类问题的解题能力。
小结作业
1.问题:
通过本课的学习,大家有什么新的收获和体会?
本节课应掌握:
利用匀变速运动各物理量的关系建立关于一元二次方程的数学模型,并利用恰当方法解它.
2.作业:教材P53,习题22.3第11题,P58,复习题22第9题.
【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解知识,内化知识。
课件17张PPT。第二十二章一元二次方程22.3实际问题与一元二次方程(4) 主 页学习方式说明
按顺序学习,可利用鼠标控制进程。
从右侧或上方导航栏中选择内容,进行学习。
电子教案可查看配套教案,课后练习可查看配套练习(含答案)。
目标呈现教材分析复习引入探索新知 一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车.
(1)从刹车到停车用了多少时间?
(2)从刹车到停车平均每秒车速减少多少?
(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)?探索新知探索新知 刹车后汽车行驶20m时用多少时间?
(精确到0.1秒)反馈练习拓展提高拓展提高通过本课的学习,大家有什么新的收获和体会?小结作业教材P54,习题22.3第11题,
P58,复习题22第9题小结作业双基演练 能力提升聚焦中考