【重难点突破】:专题21.10 一元二次方程的实际应用六大题型(人教版九上)

文档属性

名称 【重难点突破】:专题21.10 一元二次方程的实际应用六大题型(人教版九上)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-07-23 19:32:43

文档简介

中小学教育资源及组卷应用平台
专题十:一元二次方程的实际问题六大题型
【人教版】
本卷共含有26道题,共包含了增长率问题+传播问题+销售问题+几何动点问题+工程问题+几何图形问题,实际应用题是考试常考内容之一。
1.云南某地一村民,2021年承包种植橙子树200亩,由于第一年收成不错,该村民每年都增加种植面积,到2023年共种植288亩.假设每年的增长率相同.
(1)求该村民这两年种植橙子亩数的平均增长率.
(2)某水果批发店销售该种橙子,市场调查发现,当橙子售价为18元/千克时,每天能售出120千克,售价每降低1元,每天可多售出15千克,为了减少库存,该店决定降价促销,已知该橙子的平均成本价为8元/千克,若使销售该种橙子每天获利840元,则售价应降低多少元?
【答案】(1)
(2)6元
【分析】本题考查了一元二次方程的应用-增长率,最大利润问题,
(1)设该村民这两年种植橙子亩数的平均增长率为x,由题意得:,求解即可;
(2)设降价y元,则每千克橙子盈利元,每天可售出千克,利用每天销售获得的总利润=每件千克的销售利润×每天的销售量,构造方程,解之即可.
【详解】(1)解:设该村民这两年种植橙子亩数的平均增长率为x,
根据题意得:,
解得:(不符合题意,舍去).
答:该村民这两年种植橙子亩数的平均增长率为;
(2)解:设售价应降价y元,则每千克的销售利润为元,每天能售出千克,
根据题意得:,
整理得:,
解得:(不符合题意,舍去).
答:售价应降低6元.
2.“爱在烟台,难以离开”,醉美所城里在2024年“五一”小长假期间,接待游客达2万人次,预计在2026年“五一”小长假期间,接待游客万人次,一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验,若每碗卖10元,平均每天将销售60碗;若价格每提高1元,则平均每天少销售4碗.
(1)求出2024至2026年“五一”小长假期间游客人次的年平均增长率;
(2)为了更好地维护烟台形象,物价局规定每碗售价不得超过15元,则当每碗售价定为多少元时,店家才能实现每天利润360元?
【答案】(1)年平均增长率为
(2)当每碗售价定为15元时,店家才能实现每天利润360元
【分析】本题主要考查了一元二次方程的实际应用:
(1)设年平均增长率为,则2025年接待游客万人,2026年接待游客万人,据此列出方程求解即可;
(2)设每碗售价定为元时,店家才能实现每天利润600元,根据利润(售价成本价)销售量列出方程求解即可.
【详解】(1)解:设年平均增长率为,
依题意有.
解得,(舍去).
答:年平均增长率为;
(2)解:设每碗售价定为元时,店家才能实现每天利润600元,
依题意得:,
解得,,
每碗售价不得超过15元,
当每碗售价定为15元时,店家才能实现每天利润360元.
3.2023年10月4日,杭州第19届亚运会龙舟项目在温州龙舟运动中心开赛.某商店为满足龙舟爱好者的需求,特推出了龙舟模型.已知该模型每件成本30元,当模型售价为50元时,10月售出300件,11月、12月销量持续走高,假如12月售出507件.
(1)求11月、12月这两个月的月平均增长率.
(2)为了让利于爱好者,商店决定在每月售出507件的基础上降价销售.已知模型单价每降低1元,可多售出5件.若要使该商店仍能获利5570元,则每件模型应降价多少元?
【答案】(1)
(2)10元
【分析】本题主要考查了一元二次方程的实际应用.
(1)设11月、12月这两个月的月平均增长率为x,则11月售出件,12月售出件,再根据十二月售出507件列出方程求解即可;
(2)设每件模型应降价m元,则每件模型的利润为元,销售量为件,再根据获利5570元列出方程求解即可.
【详解】(1)解:(1)设11月、12月这两个月的月平均增长率为x.根据题意,得

解得(不合题意,舍去).
答:11月、12月这两个月的月平均增长率为.
(2)解:设当模型降价m元时,该商店获利5570元.根据题意,得

解得(不合题意,舍去).
答:每件模型应降价10元.
4.某蔬菜种植园2021年种植西红柿,平均每亩的利润是2000元.2022年改种新品种,每亩平均利润有所增长.2023年该种植园引入电商销售,平均每亩利润增长率是2022年平均每亩利润增长率的两倍,2023年该种植园平均每亩的利润是2640元.求该种植园2023年每亩平均利润的增长率是多少?
【答案】2023年每亩平均利润的增长率为
【分析】本题考查了一元二次方程的应用:增长率问题,有关增长率问题的等量关系:①原产量+增产量=现在的产量;②增产量=原产量×增长率;③现在的产量=原产量×(1+增长率).设2022年平均每亩利润增长率为x,则2023平均每亩利润增长率为,结合2023年该种植园平均每亩的利润是2640元建立方程求解即可.
【详解】解:设2022年平均每亩利润增长率为x,则2023平均每亩利润增长率为,
依题意得:,
化简得,
解得:,(不合题意,舍去).
∴;
答:2023年每亩平均利润的增长率为.
5.有一个人患了流感,经过两轮传染后共有121个人患了流感。
(1)每轮传染中平均一个人传染了几个人?
(2)如果按照这样的传染速度,经过三轮传染后共有多少人患流感?
【答案】(1)每轮传染中平均一个人传染个人.
(2).
【分析】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.
(1)设第一个人传染了人,根据两轮传染后共有人患了流感;列出方程,即可求解;
(2)根据题意,求出三轮之后患流感的人数.
【详解】(1)解:设每轮传染中平均一个人传染个人,
由题意得:,
解得:,,

不合题意,舍去,

答:每轮传染中平均一个人传染个人.
(2)则第三轮的患病人数为:.
故答案为:.
6.有一人患了红眼病,经过两轮传染后共有64人患病.
(1)每轮传染中平均一个人传染了几个人
(2)若不及时控制,按这样的传染速度,三轮传染后患病的共有多少人?
【答案】(1)每轮传染中平均一个人传染了7个人
(2)三轮传染后患病的共有512人
【分析】本题考查根据实际问题列出一元二次方程,先用含有x的代数式计算出第一轮感染后的人数,再在第一轮感染人数的基础上列出第二轮感染后的人数,列出等式,能够找到等量关系是解决本题的关键.
(1)设每轮传染中平均一个人传染了x个人,根据题意,得,解方程即可.
(2)根据题意,得.
【详解】(1)设每轮传染中平均一个人传染了x个人,根据题意,得,
解方程,得(舍去),
答:每轮传染中平均一个人传染了7个人.
(2)根据题意,得 (人)
答:三轮传染后患病的共有512人.
7.冬春季是传染病高发季节,据统计,去年冬春之交,有一人患了流感,在没有采取医疗手段的情况下,经过两轮传染后共有64人患流感.
(1)求每轮传染中平均一个人传染了多少人?
(2)若不及时控制,则第三轮感染后,患流感的共有多少人?
【答案】(1)7
(2)512
【分析】本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.
(1)设每轮传染中平均每人传染了人,根据经过两轮传染后共有64人患了流感,可求出;
(2)用第二轮每轮传染中平均每人传染的人数,可求出第三轮过后,患流感的人数.
【详解】(1)设每轮传染中平均每人传染了人,
或(舍去).
答:每轮传染中平均一个人传染了7个人;
(2)(人.
答:第三轮感染后,患流感的共有512人.
8.有一只鸡患了某种传染病,如果不加以控制,则经过两轮传染后将有81只鸡患上该种传染病.
(1)求平均一只鸡传染几只鸡?
(2)按此传播速度,经过3轮传染后共有多少只鸡受到传染?
【答案】(1)平均一只鸡传染只鸡
(2)经过3轮传染后共有729只鸡受到传染,
【分析】本题考查了一元二次方程的应用;
(1)设每轮传染中只鸡传染只鸡,则第一轮传染中有只鸡被传染,第二轮传染中有只鸡被传染,根据有一只鸡患了某种传染病,如果不加以控制,则经过两轮传染后将有只鸡患上该种传染病,即可得出关于的一元二次方程,解之即可得出的值,
(2)将,代入中即可求出结论.
【详解】(1)解:设每轮传染中只鸡传染只鸡,则第一轮传染中有只鸡被传染,第二轮传染中有只鸡被传染,
依题意得:,
整理得:,
解得:,不符合题意,舍去,
答:平均一只鸡传染只鸡.
(2)解:依题意,,
答:经过3轮传染后共有729只鸡受到传染.
9.振华商厦准备在月月销售一种多功能手机专用包,计划从厂家以每个元的价格进货,经过市场营销调查发现当每个手机专用包的售价为元时,月均销量为个,售价每增长元,月均销量就相应减少个.
(1)若使这种手机专用包的月均销量不低于个,每个手机专用包售价应不高于多少元?
(2)在()的条件下,当这种手机专用包销售单价为多少元时,月销售利润是元?
【答案】(1)每个手机专用包售价应不高于元;
(2)当该这种手机专用包销售单价为元时,销售利润是元.
【分析】()设每个手机专用包售价为元,根据题意列出,然后求解即可;
()由题意列方程,然后解方程检验即可;
本题主要考查了一元二次方程的应用,一元一次不等式的应用,明确题意,准确得到数量关系是解题的关键.
【详解】(1)设每个手机专用包售价为元,
依题意得:
解得:,
∴的最大值为,
∴每个手机专用包售价应不高于元;
(2)依题意得:
整理得:,
解得:,(不符合题意,舍去),
∴当该这种手机专用包销售单价为元时,销售利润是元.
10.小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案恤衫.已知每件恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件,
(1)若降价8元,则每天销售恤衫的利润为多少元?
(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件恤衫的销售价应该定为多少?
(3)为了保证每件恤衫的利润率不低于,小明每天能否获得1200元的利润?若能,求出定价;若不能,请说明理由.(利润率)
【答案】(1)若降价8元,则每天销售恤衫的利润为元
(2)每件恤衫的销售价应该定为元
(3)不能,理由见解析
【分析】本题考查了一元二次方程的应用、一元一次不等式的应用、有理数的混合运算的应用,理解题意,正确列出方程和不等式是解此题的关键.
(1)根据题意列出式子计算即可得出答案;
(2)设每件恤衫降价元,则每天的销售量为件,根据“每天获得的利润达到1050元”列出一元二次方程,解方程即可得出答案;
(3)设每件恤衫降价元,根据“为了保证每件恤衫的利润率不低于”列出一元一次不等式,解不等式即可得出的取值范围,再根据“获得1200元的利润”列出一元二次方程,解方程即可得出答案.
【详解】(1)解:由题意得:(元),
∴若降价8元,则每天销售恤衫的利润为元;
(2)解:设每件恤衫降价元,则每天的销售量为件,
由题意得:,
解得:或,
当时,售价为(元),
当时,售价为(元),
∵优惠最大,
∴,
∴每件恤衫的销售价应该定为元;
(3)解:不能,理由如下:
设每件恤衫降价元,
∵为了保证每件恤衫的利润率不低于,
∴,
解得:,
由题意得:,
解得:或,
∵,
∴或都不符合题意,舍去,
∴为了保证每件恤衫的利润率不低于,小明每天不能获得1200元的利润.
11.每年5月份的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”.康宁公司新研发了一批便携式轮椅计划在该月销售.根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定降价销售,但每辆轮椅利润不低于180元.全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
【答案】这天售出了64辆轮椅.
【分析】此题主要考查了一元二次方程的应用,找到关键描述语,得出等量关系是解题关键.
设每辆轮椅降价元,利用利润=日销售量×单车利润列方程可求出x的值,根据每辆轮椅利润不低于180元即可得答案.
【详解】解:设每辆轮椅降价元,由题意,
得.
解得,.


(不合题意,舍去).
(辆).
所以,这天售出了64辆轮椅.
12.某商店销售某种商品,平均每天可售出30件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发托现销售单价每降低0.5元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为 件;
(2)当每件商品降价多少元时,该商店每天销售利润为2100元?
【答案】(1)42
(2)10元
【分析】本题主要考查了一元二次方程的应用,对于(1),先求出多售出的件数,再加上30件可得销售量;
对于(2),设商品降价x元,再根据销售量乘以单间利润等于2100列出方程,求出解即可.
【详解】(1)(件).
故答案为:42;
(2)解:设每件商品降价x元时,该商店每天的销售利润为2100,根据题意,得

解得,,
∵,,
∴,
即当每件商品降价10元时,该商店每天销售利润2100元.
13.如图,学校在教学楼后面搭建了两个简易的矩形自行车车棚,一边利用教学楼的后墙(可利用墙长为),其他的边用总长的不锈钢栅栏围成,左右两侧各开一个的出口后,不锈钢栅栏状如“山”字形.(备注信息:距院墙7米处,规划有机动车停车位)
(1)若设车棚宽度为,则车棚长度为_______;
(2)若车棚面积为,试求出自行车车棚的长和宽.
(3)若学校拟利用现有栅栏对车棚进行扩建,请问能围成面积为的自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.
【答案】(1)
(2)自行车车棚的宽为,自行车车棚的长为
(3)不能,理由见解析
【分析】本题考查用代数式表示式,一元二次方程的应用,根的判别式,正确理解题意找到等量关系列出方程是解题关键.
(1)根据题干条件可得自行车车棚由三条宽和一条长构成,且左右两条宽边需要开出一个的出口,然后根据自行车车棚不锈钢栅栏总长减去三条宽边长即可得出长边的长;
(2)根据(1)结果即可列出关于自行车车棚面积的一元二次方程,解出一元二次方程即可得出自行车车棚的长和宽,需注意的是一元二次方程的解需满足自行车车棚的长不超过,宽不超过7米;
(3)根据(2)中方法列出关于自行车车棚面积的一元二次方程,再利用根的判别式判断,即可解题.
【详解】(1)解:搭建自行车车棚为矩形,车棚宽度为,左右两侧各开一个的出口,
不锈钢栅栏总长,不锈钢栅栏状如“山”字形,
(),
故答案为:;
(2)解:由(1)可得,车棚面积为:(),
解得:或,
又距院墙7米处,规划有机动车停车位,
,将代入得:,满足题干条件,
自行车车棚的宽为:,
自行车车棚的长为:;
(3)解:不能,理由如下:
要围成面积为的自行车车棚,则由(1)可得:

整理得:,

故此方程没有实数根,
不能围成面积为的自行车车棚.
14.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,另三边用篱笆围成,若墙长为,墙对面有一个宽的门,篱笆总长为,围成的长方形养鸡场除门之外四周不能有空隙.要使围成的养鸡场面积为,则的长为多少?
【答案】的长为.
【分析】本题主要考查了一元二次方程的实际应用,设,则,根据长方形面积计算公式列出方程求解即可.
【详解】解:设,则,
由题意得,
解得或,
当时,,此时符合题意;
当时,,此时不符合题意;
∴,
答:的长为.
15.有一块长,宽的矩形纸片.
(1)如图1,如果在纸片的四个角裁去四个边长相等的小正方形(阴影部分)后,将其折成无盖长方体盒子.若折成的盒子的底面积为,求裁去的小正方形的边长;
(2)若需要制作一个有盖的长方体盒子,为了合理利用材料,小颖设计了如图2的裁剪方案(阴影部分为裁剪下来的边角料),其中左侧的两个阴影部分为正方形,右侧的两个阴影部分为矩形,问能否折出底面积为的有盖盒子(接缝忽略不计)?如果能,请求出盒子的体积;如果不能,请说明理由.
【答案】(1);
(2)能,.
【分析】本题考查了利用矩形的面积公式建立一元二次方程求解的运用.在解答中注意要检验方程的根是否使实际问题有意义.这是在解答时学生容易忽略的问题.
(1)设小正方形的边长为,根据题意列出方程就可以求出其解.
(2)设小正方形的边长为,根据其底面积为列出方程求解即可.
【详解】(1)设小正方形的边长为,由题意得

解得,,(不符合题意,舍去)
∴裁去的小正方形的边长为;
(2)设小正方形的边长为,由题意得
解得,,(不符合题意,舍去)
∴盒子的体积为.
16.某校有一个两面有围墙的空地,如图1,墙长为米,墙长为米,现计划用长米的栅栏围出一块矩形基地给八年级的学生进行劳动实践.
(1)当围成的矩形基地如图1所示,在边开一道米宽的门,若此时的矩形面积为米,求围成的矩形基地边的长.
(2)当围成的矩形基地如图2所示,中间用栅栏分成两块基地用于种植不同的植物,在两块基地边上各开道米宽的门,若此时的矩形总面积为米,求围成的矩形基地边的长.
【答案】(1)米
(2)米或米
【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解此题的关键.
(1)设围成的矩形基地边的长为米,则点和点之间栅栏的长度为米,故的长为米,根据此时的矩形面积为米,列出一元二次方程,解之取符合题意的值即可;
(2)设围成的矩形基地边的长为米,则点和点之间栅栏的长度为米,则点和点之间栅栏的长度为米,的长为米,根据此时的矩形面积为米,列出一元二次方程,解方程即可.
【详解】(1)解:设围成的矩形基地边的长为米,则点和点之间栅栏的长度为米,故的长为米,
由题意得:,且,
整理得:,
解得:,(不符合题意,舍去),
故围成的矩形基地边的长为米.
(2)解:设围成的矩形基地边的长为米,则点和点之间栅栏的长度为米,则点和点之间栅栏的长度为米,的长为米,
由题意得:,且,
整理得:,
解得:,,
故围成的矩形基地边的长为米或米.
17.一个矩形蔬菜大棚长,宽,其中有两横两竖四条小路,横竖小路的宽度相同,小路的面积占整个大棚面积的.
(1)小路的宽度是多少?
(2)蔬菜的种植需要两组工人来完成,甲组每平方米50元,乙组每平方米60元,若完成此大棚的种植不超过30000元,至少安排甲组种植多少平方米?
【答案】(1)小路的宽度为1米
(2)至少安排甲组种植240平方米
【分析】本题考查了一元二次方程的应用、一元一次不等式的应用,理解题意,正确列出一元二次方程以及一元一次不等式是解此题的关键.
(1)设小路的宽度是米,根据题意列出一元二次方程,解方程并检验即可得出答案;
(2)设安排甲组种植平方米,则安排乙组种植平方米,根据“完成此大棚的种植不超过30000元”列出一元一次不等式,解不等式即可得出答案.
【详解】(1)解:设小路的宽度是米,
依题意得:
解得,,
时,
舍去,
答:小路的宽度为1米.
(2)解:(平方米),
设安排甲组种植平方米,则安排乙组种植平方米,
由题意得:,
解得
答:至少安排甲组种植240平方米.
18.甲、乙两工程队共同承建某高速铁路桥梁工程,计划每天各施工米.已知甲乙每天施工所需成本共万元.因地质情况不同,甲每合格完成米桥梁施工成本比乙每合格完成米的桥梁施工成本多万元.
(1)分别求出甲,乙每合格完成米的桥梁施工成本;
(2)实际施工开始后,甲每合格完成米隧道施工成本增加万元,且每天多挖.乙每合格完成米隧道施工成本增加万元,且每天多挖米.若最终每天实际总成本比计划多万元,求的值.
【答案】(1)甲每合格完成米桥梁施工成本为万元,乙每合格完成米的桥梁施工成本为万元
(2)的值为
【分析】(1)设乙每合格完成米的桥梁施工成本为万元,则甲每合格完成米桥梁施工成本为万元,根据题意列方程即可求解;
(2)根据题意分别表示出甲、乙每天的实际工作量,实际成本,根据数量关系列方程即可求解.
【详解】(1)解:设乙每合格完成米的桥梁施工成本为万元,则甲每合格完成米桥梁施工成本为万元,
∴,解得,,
∴甲每合格完成米桥梁施工成本为万元,乙每合格完成米的桥梁施工成本为万元.
(2)解:由(1)可知,甲每合格完成米桥梁施工成本为万元,乙每合格完成米的桥梁施工成本为万元,
∴实际施工开始后,甲每合格完成米隧道施工成本增加万元,则甲每合格完成米实际成本为万元,且每天多挖,则甲每天实际完成量为米,乙每合格完成米隧道施工成本增加万元,则乙每合格完成米实际成本为万元,且每天多挖米,则乙每天实际完成量为米,终每天实际总成本比计划多万元,则最中每天的实际总成本为万元,
∴,整理得,,解得,,(不符合题意,舍去),
∴的值为.
19.某工程队采用A,B两种设备同时对长度为3600米的公路进行施工改造.原计划A型设备每小时铺设路面比B型设备的2倍多30米,则30小时恰好完成改造任务.
(1)求A型设备每小时铺设的路面长度;
(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B型设备在铺路效率不变的情况下,时间比原计划增加了小时,同时,A型设备的铺路速度比原计划每小时下降了3m米,而使用时间增加了m小时,求m的值.
【答案】(1)型设备每小时铺设的路面长度为90米
(2)的值为10
【分析】(1)设型设备每小时铺设路面米,则型设备每小时铺设路面米,根据题意列出方程求解即可;
(2)根据“型设备铺设的路面长度型设备铺设的路面长度”列出方程,求解即可.
【详解】(1)解:设型设备每小时铺设路面米,则型设备每小时铺设路面米,
根据题意得,

解得:,
则,
答:型设备每小时铺设的路面长度为90米;
(2)根据题意得,

整理得,,
解得:,(舍去),
∴的值为10.
20.甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.
(1)求甲工程队每小时修的路面长度;
(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,乙工程队修路效率保持不变的情况下,时间比原计划增加了()小时;甲工程队的修路速度比原计划每小时下降了米,而修路时间比原计划增加m小时,求m的值.
【答案】(1)甲工程队每小时铺设的路面长度为110米
(2)m的值为18
【分析】(1)设乙两工程队每小时铺设路面x米,则甲工程队每小时铺设路面米,根据题意列出方程求解即可;
(2)根据“甲工程队铺设的路面长度+乙两工程队铺设的路面长度=5800”列出方程,求解即可.
【详解】(1)解:设乙两工程队每小时铺设路面x米,则甲工程队每小时铺设路面米,
根据题意得,,
解得:,
则,
∴甲工程队每小时铺设的路面长度为110米;
(2)解:根据题意得,

整理得,,
解得:(舍去),
∴m的值为18.
21.某工程队采用A、B两种设备同时对长度为4800米的公路进行施工改造.原计划A型设备每小时铺设路面比B型设备的2倍多30米,则32小时恰好完成改造任务.
(1)求A型设备每小时铺设的路面长度;
(2)通过勘察,此工程的实际施工里程比最初的4800米多了1000米.在实际施工中,B型设备在铺路效率不变的情况下,时间比原计划增加了小时,同时,A型设备的铺路速度比原计划每小时下降了米,而使用时间增加了小时,求的值.
【答案】(1)A型设备每小时铺设的路面110米
(2)18
【分析】(1)设B型设备每小时铺设的路面x米,可得:,解方程即可解得答案;
(2)根据A型设备铺的路+B型设备铺的路=5800列方程,解方程即可得答案.
【详解】(1)设B型设备每小时铺设的路面x米,则A型设备每小时铺设路面米,由题意得

解得,
米,
所以A型设备每小时铺设的路面110米;
(2)根据题意得:,
解得,(舍去),
答:m的值是18.
22.甲、乙两工程队共同承建某高速铁路桥梁工程,桥梁总长5000米.甲,乙分别从桥梁两端向中间施工.计划每天各施工5米,因地质情况不同,两支队伍每合格完成1米桥梁施工所需成本不一样.甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米桥梁施工成本为12万.
(1)若工程结算时,乙总施工成本不低于甲总施工成本的,求甲最多施工多少米.
(2)实际施工开始后,因地质情况及实际条件比预估更复杂,甲乙两队每日完成量和成本都发生变化,甲每合格完成1米隧道施工成本增加a万元时,则每天可多挖米.乙在施工成本不变的情况下,比计划每天少挖米.若最终每天实际总成本在少于150万的情况下比计划多万元.求a的值.
【答案】(1)甲最多施工2500米
(2)a的值为6
【分析】(1)设甲工程队施工x米,则乙工程队施工(5000-x)米,由工程结算时乙总施工成本不低于甲总施工成本的,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;
(2)根据总成本=每米施工成本×每天施工的长度结合甲每合格完成1米隧道施工成本增加a万元时,则每天可多挖米.乙在施工成本不变的情况下,比计划每天少挖米,即可得出关于a的一元二次方程,解之即可得出结论.
【详解】(1)解:设甲工程队施工x米,则乙工程队施工(5000-x)米,
依题意,得:12(5000-x)≥×10x,
解得:x≤2500,
答:甲最多施工2500米.
(2)依题意,得: ,
整理,得:,
解得:,,
当时,总成本为:(万元),
∵,
∴不符合题意舍去;
当时,总成本为:(万元),
∵,
∴符合题意;
答:a的值为6.
23.如图,已知长方形的边长,,某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,当点到达点时,两点同时停止运动,问:
(1)经过多长时间,的长为?
(2)经过多长时间,的面积等于长方形面积的?
【答案】(1)经过或之后,的长为cm;
(2)秒或秒.
【分析】本题考查了一元二次方程的应用,勾股定理,熟练掌握知识点的应用是解题的关键.
()设经过后,则,,,然后由勾股定理列出方程,然后解方程即可;
()设经过秒,由题意得,,,由的面积等于长方形面积的,列出方程,然后解方程即可;
【详解】(1)设经过后,则,,,的长为cm,
根据题意,由勾股定理得:,
即,
解得:,,
答:经过或之后,的长为cm;
(2)设经过秒,的面积等于矩形面积的,
由题意得,,,
∵矩形中,,,
∴,,
∴矩形的面积为:,
∴的面积,
整理得:,
解得,,
答:经过秒或秒,的面积等于长方形面积的.
24.如图,在中,,,,动点从点出发沿边向点以的速度移动,同时动点从点出发沿边向点以的速度移动,当运动到点时P,Q两点同时停止运动,设运动时间为.
(1)_________;_________;(用含的代数式表示)
(2)若是的中点,连接、、,当为何值时的面积为?
【答案】(1),
(2)或
【分析】本题主要考查了一元二次方程的应用,解题的关键是读懂题意,找到关键描述语,列出等量关系.
(1)根据速度时间路程,列出代数式即可;
(2)如图,过点D作于H,利用三角形中位线定理求得的长度;然后根据题意和三角形的面积列出方程,求出方程的解即可.
【详解】(1)根据题意得:,,
所以;
(2)如图,过点D作于H,
∵,即,
∴,


又∵D是的中点,

∴,,

∵的面积为



整理得,
解得:,,
∴当或4时,的面积是.
25.如图,在中,,,点从点开始沿边向终点以的速度移动,与此同时,点从点开始沿边向终点以的速度移动.如果,分别从,同时出发,当点运动到点时,两点停止运动.设运动时间为.
(1)填空:_____,_____;(用含t的代数式表示)
(2)当t为何值时,的长度等于?
(3)是否存在t的值,使得四边形的面积等于?若存在,请求出此时t的值;若不存在,请说明理由.
【答案】(1),
(2),;
(3)当时,四边形的面积等于.
【分析】本题考查了行程问题的运用,一元二次方程的解法,勾股定理的运用,三角形面积公式的运用,再解答时要注意所求的解使实际问题有意义.
(1)根据路程速度时间就可以表示出,.再用就可以求出的值;
(2)在中由(1)结论根据勾股定理就可以求出其值;
(3)利用(1)的结论,根据三角形的面积公式建立方程就可以求出的值.
【详解】(1)解:由题意,得,.
故答案为:,;
(2)解:在中,由勾股定理,得,
解得:,;
(3)解:由题意,得,
解得:,(不符合题意,舍去),
当时,的面积等于.
四边形的面积.
答:当时,四边形的面积等于.
26.如图,在中,,,,点从点开始沿向点以的速度运动,点从点开始沿向点以的速度运动,,同时出发,各自到达终点后停止运动,那么运动几秒时,线段恰好平分的面积?

【答案】2秒和4秒
【分析】本题考查了一元二次方程的应用、一元一次方程的应用以及勾股定理;设秒后线段恰好平分的面积,分别求出,,得到,再通过勾股定理计算出,计算出,线段恰好平分的面积建立方程,解方程即可得到答案.
【详解】解:设秒后线段恰好平分的面积,
由题意得,,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∴或,
当时,,,符合题意,
当时,,,,不符合题意,舍去,
当点到达点后,点继续运动,如下图所示,

∴,
解得秒,
故当和时,线段恰好平分的面积.
21世纪教育网(www.21cnjy.com) 同舟共理工作室中小学教育资源及组卷应用平台
专题十:一元二次方程的实际问题六大题型
【人教版】
本卷共含有26道题,共包含了增长率问题+传播问题+销售问题+几何动点问题+工程问题+几何图形问题,实际应用题是考试常考内容之一。
1.云南某地一村民,2021年承包种植橙子树200亩,由于第一年收成不错,该村民每年都增加种植面积,到2023年共种植288亩.假设每年的增长率相同.
(1)求该村民这两年种植橙子亩数的平均增长率.
(2)某水果批发店销售该种橙子,市场调查发现,当橙子售价为18元/千克时,每天能售出120千克,售价每降低1元,每天可多售出15千克,为了减少库存,该店决定降价促销,已知该橙子的平均成本价为8元/千克,若使销售该种橙子每天获利840元,则售价应降低多少元?
2.“爱在烟台,难以离开”,醉美所城里在2024年“五一”小长假期间,接待游客达2万人次,预计在2026年“五一”小长假期间,接待游客万人次,一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验,若每碗卖10元,平均每天将销售60碗;若价格每提高1元,则平均每天少销售4碗.
(1)求出2024至2026年“五一”小长假期间游客人次的年平均增长率;
(2)为了更好地维护烟台形象,物价局规定每碗售价不得超过15元,则当每碗售价定为多少元时,店家才能实现每天利润360元?
3.2023年10月4日,杭州第19届亚运会龙舟项目在温州龙舟运动中心开赛.某商店为满足龙舟爱好者的需求,特推出了龙舟模型.已知该模型每件成本30元,当模型售价为50元时,10月售出300件,11月、12月销量持续走高,假如12月售出507件.
(1)求11月、12月这两个月的月平均增长率.
(2)为了让利于爱好者,商店决定在每月售出507件的基础上降价销售.已知模型单价每降低1元,可多售出5件.若要使该商店仍能获利5570元,则每件模型应降价多少元?
4.某蔬菜种植园2021年种植西红柿,平均每亩的利润是2000元.2022年改种新品种,每亩平均利润有所增长.2023年该种植园引入电商销售,平均每亩利润增长率是2022年平均每亩利润增长率的两倍,2023年该种植园平均每亩的利润是2640元.求该种植园2023年每亩平均利润的增长率是多少?
5.有一个人患了流感,经过两轮传染后共有121个人患了流感。
(1)每轮传染中平均一个人传染了几个人?
(2)如果按照这样的传染速度,经过三轮传染后共有多少人患流感?
6.有一人患了红眼病,经过两轮传染后共有64人患病.
(1)每轮传染中平均一个人传染了几个人
(2)若不及时控制,按这样的传染速度,三轮传染后患病的共有多少人?
7.冬春季是传染病高发季节,据统计,去年冬春之交,有一人患了流感,在没有采取医疗手段的情况下,经过两轮传染后共有64人患流感.
(1)求每轮传染中平均一个人传染了多少人?
(2)若不及时控制,则第三轮感染后,患流感的共有多少人?
8.有一只鸡患了某种传染病,如果不加以控制,则经过两轮传染后将有81只鸡患上该种传染病.
(1)求平均一只鸡传染几只鸡?
(2)按此传播速度,经过3轮传染后共有多少只鸡受到传染?
9.振华商厦准备在月月销售一种多功能手机专用包,计划从厂家以每个元的价格进货,经过市场营销调查发现当每个手机专用包的售价为元时,月均销量为个,售价每增长元,月均销量就相应减少个.
(1)若使这种手机专用包的月均销量不低于个,每个手机专用包售价应不高于多少元?
(2)在()的条件下,当这种手机专用包销售单价为多少元时,月销售利润是元?
10.小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案恤衫.已知每件恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件,
(1)若降价8元,则每天销售恤衫的利润为多少元?
(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件恤衫的销售价应该定为多少?
(3)为了保证每件恤衫的利润率不低于,小明每天能否获得1200元的利润?若能,求出定价;若不能,请说明理由.(利润率)
11.每年5月份的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”.康宁公司新研发了一批便携式轮椅计划在该月销售.根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定降价销售,但每辆轮椅利润不低于180元.全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?
12.某商店销售某种商品,平均每天可售出30件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发托现销售单价每降低0.5元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为 件;
(2)当每件商品降价多少元时,该商店每天销售利润为2100元?
13.如图,学校在教学楼后面搭建了两个简易的矩形自行车车棚,一边利用教学楼的后墙(可利用墙长为),其他的边用总长的不锈钢栅栏围成,左右两侧各开一个的出口后,不锈钢栅栏状如“山”字形.(备注信息:距院墙7米处,规划有机动车停车位)
(1)若设车棚宽度为,则车棚长度为_______;
(2)若车棚面积为,试求出自行车车棚的长和宽.
(3)若学校拟利用现有栅栏对车棚进行扩建,请问能围成面积为的自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.
14.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,另三边用篱笆围成,若墙长为,墙对面有一个宽的门,篱笆总长为,围成的长方形养鸡场除门之外四周不能有空隙.要使围成的养鸡场面积为,则的长为多少?
15.有一块长,宽的矩形纸片.
(1)如图1,如果在纸片的四个角裁去四个边长相等的小正方形(阴影部分)后,将其折成无盖长方体盒子.若折成的盒子的底面积为,求裁去的小正方形的边长;
(2)若需要制作一个有盖的长方体盒子,为了合理利用材料,小颖设计了如图2的裁剪方案(阴影部分为裁剪下来的边角料),其中左侧的两个阴影部分为正方形,右侧的两个阴影部分为矩形,问能否折出底面积为的有盖盒子(接缝忽略不计)?如果能,请求出盒子的体积;如果不能,请说明理由.
16.某校有一个两面有围墙的空地,如图1,墙长为米,墙长为米,现计划用长米的栅栏围出一块矩形基地给八年级的学生进行劳动实践.
(1)当围成的矩形基地如图1所示,在边开一道米宽的门,若此时的矩形面积为米,求围成的矩形基地边的长.
(2)当围成的矩形基地如图2所示,中间用栅栏分成两块基地用于种植不同的植物,在两块基地边上各开道米宽的门,若此时的矩形总面积为米,求围成的矩形基地边的长.
17.一个矩形蔬菜大棚长,宽,其中有两横两竖四条小路,横竖小路的宽度相同,小路的面积占整个大棚面积的.
(1)小路的宽度是多少?
(2)蔬菜的种植需要两组工人来完成,甲组每平方米50元,乙组每平方米60元,若完成此大棚的种植不超过30000元,至少安排甲组种植多少平方米?
18.甲、乙两工程队共同承建某高速铁路桥梁工程,计划每天各施工米.已知甲乙每天施工所需成本共万元.因地质情况不同,甲每合格完成米桥梁施工成本比乙每合格完成米的桥梁施工成本多万元.
(1)分别求出甲,乙每合格完成米的桥梁施工成本;
(2)实际施工开始后,甲每合格完成米隧道施工成本增加万元,且每天多挖.乙每合格完成米隧道施工成本增加万元,且每天多挖米.若最终每天实际总成本比计划多万元,求的值.
19.某工程队采用A,B两种设备同时对长度为3600米的公路进行施工改造.原计划A型设备每小时铺设路面比B型设备的2倍多30米,则30小时恰好完成改造任务.
(1)求A型设备每小时铺设的路面长度;
(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B型设备在铺路效率不变的情况下,时间比原计划增加了小时,同时,A型设备的铺路速度比原计划每小时下降了3m米,而使用时间增加了m小时,求m的值.
20.甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.
(1)求甲工程队每小时修的路面长度;
(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,乙工程队修路效率保持不变的情况下,时间比原计划增加了()小时;甲工程队的修路速度比原计划每小时下降了米,而修路时间比原计划增加m小时,求m的值.
21.某工程队采用A、B两种设备同时对长度为4800米的公路进行施工改造.原计划A型设备每小时铺设路面比B型设备的2倍多30米,则32小时恰好完成改造任务.
(1)求A型设备每小时铺设的路面长度;
(2)通过勘察,此工程的实际施工里程比最初的4800米多了1000米.在实际施工中,B型设备在铺路效率不变的情况下,时间比原计划增加了小时,同时,A型设备的铺路速度比原计划每小时下降了米,而使用时间增加了小时,求的值.
22.甲、乙两工程队共同承建某高速铁路桥梁工程,桥梁总长5000米.甲,乙分别从桥梁两端向中间施工.计划每天各施工5米,因地质情况不同,两支队伍每合格完成1米桥梁施工所需成本不一样.甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米桥梁施工成本为12万.
(1)若工程结算时,乙总施工成本不低于甲总施工成本的,求甲最多施工多少米.
(2)实际施工开始后,因地质情况及实际条件比预估更复杂,甲乙两队每日完成量和成本都发生变化,甲每合格完成1米隧道施工成本增加a万元时,则每天可多挖米.乙在施工成本不变的情况下,比计划每天少挖米.若最终每天实际总成本在少于150万的情况下比计划多万元.求a的值.
23.如图,已知长方形的边长,,某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,当点到达点时,两点同时停止运动,问:
(1)经过多长时间,的长为?
(2)经过多长时间,的面积等于长方形面积的?
24.如图,在中,,,,动点从点出发沿边向点以的速度移动,同时动点从点出发沿边向点以的速度移动,当运动到点时P,Q两点同时停止运动,设运动时间为.
(1)_________;_________;(用含的代数式表示)
(2)若是的中点,连接、、,当为何值时的面积为?
25.如图,在中,,,点从点开始沿边向终点以的速度移动,与此同时,点从点开始沿边向终点以的速度移动.如果,分别从,同时出发,当点运动到点时,两点停止运动.设运动时间为.
(1)填空:_____,_____;(用含t的代数式表示)
(2)当t为何值时,的长度等于?
(3)是否存在t的值,使得四边形的面积等于?若存在,请求出此时t的值;若不存在,请说明理由.
26.如图,在中,,,,点从点开始沿向点以的速度运动,点从点开始沿向点以的速度运动,,同时出发,各自到达终点后停止运动,那么运动几秒时,线段恰好平分的面积?

21世纪教育网(www.21cnjy.com) 同舟共理工作室