四清导航(华东师大版)八年级数学下册教案:18章平行四边形(8份打包)

文档属性

名称 四清导航(华东师大版)八年级数学下册教案:18章平行四边形(8份打包)
格式 zip
文件大小 546.2KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2016-01-03 22:48:01

文档简介

§18.1 平行四边形的性质教案(1)
一、教学目标
1知识目标:
1、通过经历运用图形的变换探索图形性质的过程,体验数学研究和发现的过程,并得出正确的结论.
2、在对平行四边形的原有认识的基础上,探索并掌握平行四边形的性质.
2能力目标:
培养学生的观察猜想、实践操作、团队合作、数学说理能力和数学语言规范表达的能力.
3情感目标:
渗透化未知为已知的数学方法 ( http: / / www.21cnjy.com );渗透从特殊到一般、从具体到抽象、从感性到理性的辩证思想;渗透严谨求实的科学态度的理念;营造“民主、和谐”的课堂氛围让学生在愉快的学习中不断获得成功的体验.
二、教学重点、难点
教学重点:让学生亲历平行四边形性质的“观察——猜想——验证”过程,理解性质内容,并学会用它们进行有关的说理和计算
教学难点: 通过性质的推导,培养学生独立思考、自主探索的精神,提高分析问题和解决问题的能力.
三、教学过程
(一)、创设情境、导入新课
①多媒体课件展示图片,通过观察图案,指出平行四边形是我们生活中常见的一种图形.
②问题情境导入:如图是某区部分街道示意图,其中BC∥AD∥EG,AB//FH∥DC从学校站乘车到书店站只有两条路线有直接到达的公交车,
喜羊羊走路线1:学校—E—A—F—书店;
美羊羊走路线2:学校—H—O—G—书店.
谁先到书店?
(二)、概念引入
1、两组对边分别平行的四边形叫做平行四边形.
记作: ABCD 读作:平行四边形ABCD
∵AB∥CD AD∥BC
∴四边形ABCD是平行四边形.或 ∵四边形ABCD是平行四边形
∴AB∥CD AD∥BC
教师提示:平行四边形的对边平行
2、下面的图形中 是平行四边形.
(三)探索发现
画一画
1、如何画一个ABCD ?
2、我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD一样大小的EFGH?
量一量
1、以同桌为单位,用直尺,量角器等工具度量你的平行四边形的边和角,并记录下数据,猜想平行四边形的对边对角之间的关系.
教师请部分同学公布测量结果.
2、用几何画板动画展示运动中的平行四边形的对边、对角之间的关系.让学生加深对平行四边形的对边,对角的认识.
转一转
在平行四边形ABCD中连结AC、BD,它们的交点记为O.
用一枚图钉在O点穿过,观察旋转后的 ABCD与 EFGH是否重合
用几何画板动态展示平行四边形绕对角线交点旋转180度的情况,引导学生推出平行四边形的性质.
引导学生得出结论
平行四边形的性质:平行四边形的对边相等、对角相等
几何语言描述:
∵ 四边形ABCD是平行四边形
∴ AB=CD,AD=BC.(平行四边形的对边相等)
∠D= ∠B, ∠C= ∠B .(平行四边形的对角相等)
(四)例题讲解
例1 如图,在ABCD中,已知∠A=40°,求其它各个内角的度数.
解 ∵四边形ABCD是平行四边形
∴ ∠C =∠A = 40°
∵ AD∥BC,
∴ ∠B = 180°-∠A = 180° - 40° = 140°
∴ ∠D = ∠B = 140°
变式1.已知: ABCD中, 若∠A+∠C=80°,你能求出各角的度数吗?说说你的理由.
变式2.已知 ABCD中, 若∠B=2 ∠A ,你能求出各角的度数吗?说说你的理由.
例2如图,在□ABCD 中,AB=8,周长等于24.求其余三条边的长.
解:在□ABCD 中,
AB=CD, AD=BC.
∵ AB=8,∴ CD=8.
又∵AB+BC+CD+AD=24,
∴ AD=BC= = 4.
变式1.如图:已知平行四边形ABCD周长等于16,AB:BC=3:5, 求平行四边形的各边长.
变式2.如图:已知平行四边形 ABCD,CD=3cm,BC=5cm,AC=4cm, 求 ABCD的面积.
试一试
如图,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺量出平行线之间这些垂线段的长度.
( http: / / www.21cnjy.com )
经过度量,我们发现这些垂线段的长度都相等.由此,我们得到平行线的又一个性质:平行线之间的距离处处相等.
(五)巩固提高
1、(基础题)如图所示,四边形ABCD是平行四边形
①若∠A=120° ,则∠B=  .∠C=   ;∠D= .
②若AB=5,BC=3,求它的周长(请写出推理过程).
解决问题
引导学生利用平行四边形的性质解决刚才喜羊羊与美羊羊碰到的问题,
2、(提高题)如图所示,在平行四边形ABCD中BC=9,若BE平分∠ABC,且把AD分成两段的长度差为1cm,求CD的长.
(六)小结回顾
1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.
2、平行四边形的性质:
对边 对边平行且相等
角 对角相等 邻角互补
(七)作业布置
基础题
课本习题18.1第1、2题
中等题
如右图,AB=AC,且AB=5,从等腰三角形底边上任一点,分别作两腰的平行线,求所成的平行四边形AEDF的周长?
提高题
(深圳中考题)如图所示,平 ( http: / / www.21cnjy.com )行四边形ABCD中,点E在边AD上,以BE为折痕,将ΔABC向上翻折,点A正好落在CD上的点F处,若ΔFDE的周长为8, ΔFCB的周长为22,则FC的长为
学校
书店
A
C
E
F
G
H
B
A
C
D
E
F
D
C
B
AB
B
C
D
E
F18.1 平行四边形的性质(1)
知识技能目标
1.通过平行四边形的概念和实验操作,理解并掌握平行四边形的特征:平行四边形的对边平行且相等,对角相等;
2.会利用平行四边形的特征进行有关角和边的计算;
3.了解两平行线之间距离的概念;
4.能列方程解图形计算问题.
过程性目标
通过对图形变换的操作和观察,经历探索平行四边形特征的过程,体会研究几何图形性质的方法.
课前准备
1.通过观察,寻找现实生活中平行四边形的实例;
2.准备一些方格纸、剪刀,几只图钉.
教学过程
一、创设情境
师 平行四边形是我们现实生活中常见的一种图形,小学里我们已经有所了解,请同学们说出观察后发现的现实生活中平行四边形的例子.
( http: / / www.21cnjy.com )
生 竹篱笆格子、工厂的伸缩大门、教室内铺的平行四边形地砖图案…….
师 很好!再请同学们想想小学里是怎样识别一个四边形是平行四边形的?
生 有两组对边分别平行的四边形就是平行四边形.
师 对!你们的记忆力真棒!有两组对边分别平行的四边形就叫做平行四边形(parallelogram),平行四边形ABCD可记作“ABCD ”.下面请同学们找找下列哪些图形是平行四边形?我们来比一比,看谁找得又快又正确.
在学生找出平行四边形的基础上,师生共同归纳:
平行四边形的一个主要特征:两组对边分别平行.
师 那么平行四边形还有什么其他特征呢?
二、探究归纳
师 请同学们思考:如何画一个ABCD ?
(分组讨论,老师边看边指导).
( http: / / www.21cnjy.com )
生 步骤 1.任意画一条直线m;
2.在直线m上任意取点A,在直线m外任意取点B,连结AB;
3.过点B作直线m的平行线n,在直线n上任取点C;
4.过点C作直线AB的平行线,交直线m于点D,就得到□ABCD.
师 我们刚才画平行四边形的过程就是利用了平行四边形的特征,请同学们试一试,用什么方法可以再画一个和ABCD一样大小的EFGH?(学生边讨论边操作,然后介绍方法,教师作适当的点评,并加以表扬.)并比较这两个平行四边形的对应边、对应角的关系?
生 这两个平行四边形的对应边、对应角相等.
师 在 ABCD中 连结AC、BD,它们的交点记为O.将两个平行四边形完全重合地叠在一起,用一枚图钉在O 穿过,将 ABCD绕点O旋转180°,请同学们观察旋转后的ABCD和纸上所画的EFGH是否重合?ABCD是一个什么图形?
( http: / / www.21cnjy.com )
生 是一个中心对称图形.
师 ABCD既然是一个中心对称图形,那么它的对边,对角还有什么关系?(请同学们继续讨论,并把你们讨论的结果告诉大家).
生 ∵ABCD是一个中心对称图形,
且 O是对称中心,
∴AD = BC,AB = CD,
∠A = ∠B, ∠C =∠D.
师生共同归纳:平行四边形的对边相等,对角相等.
三、实践应用
例1 如图,在ABCD中,已知∠A=40°,求其它各个内角的度数.
解 ∵四边形ABCD是平行四边形
∴ ∠C =∠A = 40°
∵ AD∥BC,
∴ ∠B = 180°-∠A = 180° - 40° = 140°
∴ ∠D = ∠B = 140°
如上图,在□ABCD 中,AB=8,周长等于24.求其余三条边的长.
解:在□ABCD 中,
AB=CD, AD=BC.
∵ AB=8,∴ CD=8.
又∵AB+BC+CD+AD=24,
∴ AD=BC= = 4.
试一试
师 请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线(老师边看边指导同学画).
( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
师 请同学用刻度尺量一下方格纸上两平行线间的距离,你发现了什么现象?
生 平行线间的距离相等.
师 这种现象说明了平行线的又一个特征:
平行线之间的距离处处相等.
∵l1 ∥l2, AB⊥l2 ,CD⊥l1
∴AB = CD(平行线之间的距离处处相等).
师 如果AB,CD是夹在两平行线l1 、l2之间的两条平行线段,那么AB和CD仍相等吗?(请同学们课后画图思考,并想想为什么?)
师 两条平行线,其中一条直线上任一点到另一条直线的距离,叫做两条平行线之间的距离.
师 如上图,两平行线l1 、l2之间的距离是指什么?
生 指在一条直线l1上任取一点A,过A 作AB⊥l2于点B,线段AB的长度叫做两平行线l1 、l2间的距离.
师 思考:两平行线之间的距离、点与直线的距离、点与点之间的距离有怎样的区别与联系?
两平行线间的距离 点到直线的距离 点到点的距离
(l1 、l2间的距离) 转化 (点A到l2间的距离)转化(点A到点B的距离)
四、交流反思
师 本堂课我们探索了平行四边形的两个特征,请同学谈谈你的收获.
生 平行四边形的对边分别平行且相等;
平行四边形的对角相等.
平行线之间的距离处处相等.
师 通过学习,我们又多了说明两条线段平行、相等和两个角相等的方法,请同学们一定要掌握,仔细领会.
下面请同学用几何语言叙述这两个特征 .
生 1.平行四边形的对边平行且相等;
∵ 四边形ABCD是平行四边形,
∴ AB∥CD,AD∥BC(平行四边形的对边平行);
AB = CD,AD = BC (平行四边形的对边相等).
2. 平行四边形的对角相等.
∵ 四边形ABCD是平行四边形,
∴∠A = ∠C,∠B= ∠D(平行四边形的对角相等).
五、检测反馈
1.已知在ABCD中, ∠A + ∠C = 80°,求四个角的度数.
2.已知在ABCD中,周长为40cm,且AB比BC长2cm,求它的各边的长.
3.如图, ABCD中,∠BAD = 130°,AE⊥BC,AF⊥CD,垂足分别为E,F,求∠EAF的度数. 
4.如图,ABCD中,AB比AD大2cm, ∠DAB的平分线AE交CD于E,∠ABC的平分线BF交CD于F,如果ABCD的周长为24cm,求CE,EF,FD的长.
( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
3 4
5.思考题 已知平行四边形一个内角的平分线 ( http: / / www.21cnjy.com )与平行四边形的一边相交,把此边分成两线段的比是2∶3,此平行四边形的周长为32cm,求此平行四边形相邻两边的长.(提示:应分AE∶ED = 2∶3或AE∶ED =3∶2两种情况解)18.2 平行四边形的判定(1)
教学目的
1.使学生掌握用平行四边形的定义判定一个四边形是平行四边形;
2.理解并掌握二组对边分别相等、一组对边平行且相等的四边形是平行四边形;
3.能运这三种方法来证明一个四边形是平行四边形。
教学重点和难点
重点:平行四边形的判定定理;
难点:掌握平行四边形的性质和判定的区别及熟练应用。
教学过程
(一)复习提问:
1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)
2. 将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了 ( http: / / www.21cnjy.com )平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
(二)新课
平行四边形的判定:
方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边分别互相平行,
则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
方法二:两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?
已知:四边形ABCD中,AB=CD,AD=BC
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1)
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
判定一:二组对边分别相等的四边形是平行四边形
∵AB=CD,AD=BC,∴四边形ABCD是平行四边形
练习:课本P85练习题第1题。
方法三:一组对边平行且相等的四边形是平行四边形。
设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?
活动:课本探究内容,并用事准备好的 ( http: / / www.21cnjy.com )纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?
设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)
小结:平行四边形判定方法三:
前提:若一个四边形有一组对边平行且相等。
结论:这个四边形是一个平行四边形。
如图用几何语言表达为:
∵AB=CD 且AB∥CD
∴四边形ABCD是平行四边形
平行且相等可用符号“”,读作“平行且相等”。
∵ABCD
∴四边形ABCD是平行四边形
(三)例题讲解:
例1 已知:平行四边形ABCD中,E,F分别在边BC,DA上,且AF=CE。
求证:四边形AECF是平行四边形
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,即AF∥CE.
∵ AF=CE,
∴四边形AECF是平行四边形.
练习:已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:四边形EFGH是平行四边形。
(让学生板演)
图7
小结
今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件。
注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边形的,它是梯形。
作业布置:1.课本。
2.练习册相关内容。18.1.1 平行四边形的性质(一)
教学目标:
理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.
培养学生发现问题、解决问题的能力及逻辑推理能力.
重点、难点
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
难点:运用平行四边形的性质进行有关的论证和计算.
三、例题的意图分析
例1是教材P93的例1,它是平行 ( http: / / www.21cnjy.com )四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.
四、课堂引入
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?
你能总结出平行四边形的定义吗?
(1)定义:两组对边分别平行的四边形是平行四边形.
(2)表示:平行四边形用符号“”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
①∵AB//DC ,AD//BC ,
∴四边形ABCD是平行四边形(判定);
②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).
注意:平行四边形中对边是指无公共点的边,对 ( http: / / www.21cnjy.com )角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)
2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
让学生根据平行四边形的定义画一个一个平行四 ( http: / / www.21cnjy.com )边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.
(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)
(2)猜想 平行四边形的对边相等、对角相等.
下面证明这个结论的正确性.
已知:如图ABCD,
求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.
(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)
证明:连接AC,
∵  AB∥CD,AD∥BC,
∴  ∠1=∠3,∠2=∠4.
又  AC=CA,
∴  △ABC≌△CDA (ASA).
∴  AB=CD,CB=AD,∠B=∠D.
又 ∠1+∠4=∠2+∠3,
∴  ∠BAD=∠BCD.
由此得到:
平行四边形性质1  平行四边形的对边相等.
平行四边形性质2 平行四边形的对角相等.
五、例习题分析
例1(教材P93例1)
例2(补充)如图,在平行四边形ABCD中,AE=CF,
求证:AF=CE.
分析:要证AF=CE,需证 ( http: / / www.21cnjy.com )△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.
证明略.
六、随堂练习
1.填空:
(1)在ABCD中,∠A=,则∠B= 度,∠C= 度,∠D= 度.
(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.
(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.
2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
七、课后练习
1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).
(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是
2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有( ).
(A)4个 (B)5个 (C)8个 (D)9个
3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.
18.1.1 平行四边形的性质(二)
教学目标:
理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
培养学生的推理论证能力和逻辑思维能力.
重点、难点
重点:平行四边形对角线互相平分的性质,以及性质的应用.
难点:综合运用平行四边形的性质进行有关的论证和计算.
三、例题的意图分析
本节课安排了两个例题,例1是一 ( http: / / www.21cnjy.com )道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
例2是教材P94的例2,这是复习巩 ( http: / / www.21cnjy.com )固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.
四、课堂引入
1.复习提问:
(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:
(2)平行四边形的性质:
①具有一般四边形的性质(内角和是).
②角:平行四边形的对角相等,邻角互补.
边:平行四边形的对边相等.
2.【探究】:
请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.
五、例习题分析
例1(补充)  已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF.
证明:在 ABCD中,AB∥CD,
∴ ∠1=∠2.∠3=∠4.
又 OA=OC(平行四边形的对角线互相平分),
∴ △AOE≌△COF(ASA).
∴ OE=OF,AE=CF(全等三角形对应边相等).
∵ ABCD,∴ AB=CD(平行四边形对边相等).
∴ AB—AE=CD—CF. 即 BE=FD.
※【引申】若例1中的条件都不变,将 ( http: / / www.21cnjy.com )EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.
( http: / / www.21cnjy.com )  ( http: / / www.21cnjy.com )  ( http: / / www.21cnjy.com )
解略
例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算
解略(参看教材P94).
六、随堂练习
1.在平行四边形中,周长等于48,
已知一边长12,求各边的长
已知AB=2BC,求各边的长
已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长
2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm.
3.ABCD一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD的周长是__ ___.
七、课后练习
1.判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD. ( )
(2)平行四边形两条对角线的交点到一组对边的距离相等. ( )
(3)平行四边形的两组对边分别平行且相等. ( )
(4)平行四边形是轴对称图形. ( )
2.在 ABCD中,AC=6、BD=4,则AB的范围是__ ______.
3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 .
4.公园有一片绿地,它的形状是平行四边形,绿 ( http: / / www.21cnjy.com )地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.18.2.1 平行四边形的判定(一)
教学目标:
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二、重点、难点
重点:平行四边形的判定方法及应用.
难点:平行四边形的判定定理与性质定理的灵活应用.
三、例题的意图分析
本节课安排了3个例题,例1是 ( http: / / www.21cnjy.com )教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
四、课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2 对角线互相平分的四边形是平行四边形。
五、例习题分析
例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.
例2(补充) 已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.
求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;
(2) △ABC的顶点分别是△B′C′A′各边的中点.
证明:(1) ∵ A′B′∥BA,C′B′∥BC,
∴ 四边形ABCB′是平行四边形.
∴ ∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.
∴ AB=B′C, AB=A′C(平行四边形的对边相等).
∴ B′C=A′C.
同理  B′A=C′A, A′B=C′B.
∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.
例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.
解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.
理由是:因为正△ABO≌正△A ( http: / / www.21cnjy.com )OF,所以AB=BO,OF=FA.根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.
六、随堂练习
1.如图,在四边形ABCD中,AC、BD相交于点O,
(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;
(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.
2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.
3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:
①第4个图形中平行四边形的个数为___ __. (6个)
②第8个图形中平行四边形的个数为___ __. (20个)
七、课后练习
1.(选择)下列条件中能判断四边形是平行四边形的是( ).
(A)对角线互相垂直 (B)对角线相等
(C)对角线互相垂直且相等 (D)对角线互相平分
2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,
求证:BE=CF
18.2.2 平行四边形的判定(二)
教学目标:
1.掌握用一组对边平行且相等来判定平行四边形的方法.
2.会综合运用平行四边形的四种判定方法和性质来证明问题.
3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.
重点、难点
1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
2.难点:平行四边形的判定定理与性质定理的综合应用.
三、例题的意图分析
本节课的两个例题都是补充的题目, ( http: / / www.21cnjy.com )目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.
四、课堂引入
平行四边形的性质;
平行四边形的判定方法;
【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
结论:一组对边平行且相等的四边形是平行四边形.
五、例习题分析
例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.
分析:证明BE=DF,可以证明两个三角形全等,也可以证明
四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
证明:∵ 四边形ABCD是平行四边形,
∴ AD∥CB,AD=CD.
∵ E、F分别是AD、BC的中点,
∴ DE∥BF,且DE=AD,BF=BC.
∴ DE=BF.
∴ 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
∴ BE=DF.
此题综合运用了平行四边形的 ( http: / / www.21cnjy.com )性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.
分析:因为BE⊥AC于E,DF⊥AC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.
证明:∵ 四边形ABCD是平行四边形,
∴ AB=CD,且AB∥CD.
∴ ∠BAE=∠DCF.
∵ BE⊥AC于E,DF⊥AC于F,
∴ BE∥DF,且∠BEA=∠DFC=90°.
∴ △ABE≌△CDF (AAS).
∴ BE=DF.
∴ 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
六、课堂练习
1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是( ).
(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D
(C)AB=CD,AD=BC (D)AB=AD,CB=CD
2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC, 找出图中的平行四边形,并说明理由.
3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.
求证:四边形AFCE是平行四边形.
七、课后练习
1.判断题:
(1)相邻的两个角都互补的四边形是平行四边形; (    )
(2)两组对角分别相等的四边形是平行四边形; (    )
(3)一组对边平行,另一组对边相等的四边形是平行四边形; (    )
(4)一组对边平行且相等的四边形是平行四边形; (    )
(5)对角线相等的四边形是平行四边形; (    )
(6)对角线互相平分的四边形是平行四边形. (    )
2.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.
3.在四边形ABCD中,(1)AB∥ ( http: / / www.21cnjy.com )CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)
18.2.3 平行四边形的判定——三角形的中位线(三)
教学目标:
理解三角形中位线的概念,掌握它的性质.
能较熟练地应用三角形中位线性质进行有关的证明和计算.
3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.
4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.
重点、难点
1.重点:掌握和运用三角形中位线的性质.
2.难点:三角形中位线性质的证明(辅助线的添加方法).
三、例题的意图分析
例1是教材P98的例4,这是 ( http: / / www.21cnjy.com )三角形中位线性质的证明题,教材采用的是先证明后引出概念与性质的方法,它一是要练习巩固平行四边形的性质与判定,二是为了降低难度,因此教师们在教学中要把握好度.
建议讲完例1,引出三角形中位线的概念和性质后,马上做一组练习,以巩固三角形中位线的性质,然后再讲例2.
例2是一道补充题,选自老教材 ( http: / / www.21cnjy.com )的一个例题,它是三角形中位线性质与平行四边形的判定的混合应用题,题型挺好,添加辅助线的方法也很巧,结论以后也会经常用到,可根据学生情况适当的选讲例2.教学中,要把辅助线的添加方法讲清楚,可以借助与多媒体或教具.
四、课堂引入
平行四边形的性质;平行四边形的判定;它们之间有什么联系?
你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用 ( http: / / www.21cnjy.com )包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
五、例习题分析
例1(教材P98例4) 如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.
分析:所证明的结论既有平行关系,又 ( http: / / www.21cnjy.com )有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)
方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角 ( http: / / www.21cnjy.com )形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.
〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)
例2(补充)已知:如图(1),在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
分析:因为已知点E、F、G、H分别是线段的中 ( http: / / www.21cnjy.com )点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证.
证明:连结AC(图(2)),△DAG中,
∵ AH=HD,CG=GD,
∴ HG∥AC,HG=AC(三角形中位线性质).
同理EF∥AC,EF=AC.
∴ HG∥EF,且HG=EF.
∴ 四边形EFGH是平行四边形.
此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
六、课堂练习
1.(填空)如图,A、B两点 ( http: / / www.21cnjy.com )被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是 .
2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.
3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,
(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;
(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.
七、课后练习
1.(填空)一个三角形的周长是1 ( http: / / www.21cnjy.com )35cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm.
2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是 cm.
3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.18.1 平行四边形的性质(3)
教学目标
1.理解和掌握发现平行四边形的对角线互相平分的特征;
2.会利用平行四边形的特征进行相关的计算和说理.
教学过程
一、创设情境
师 请同学们画一个ABCD,对角线AC和BD相交于O,用刻度尺测量OA,OB,OC,OD的大小关系.再画一个试一试.
生 OA = OC, OB = OD.
二、探究归纳
师 很好!说明平行四边形的对角线互相平分.
在上节课平行四边形的旋转过程中,我们也观察到
了OA与OB,OC与OD能够互相重合,请同学们用
学过的知识来说明这一现象
生 ABCD是一个中心对称图形,O是它的对称中心,
OA = OC, OB = OD.
师 回答得非常正确,由此我们得出了平行四边形的又一个重要特征:
师生 平行四边形的对角线互相平分
四边形ABCD是平行四边形,
OA = OC,OB = OD(平行四边形的对角线互相平分).
师 你能证明这个定理吗?
生 证明:如图,∵ 四边形ABCD是平行四边形
∴ AB∥CD,AB=CD
∴ ∠1=∠2,∠3=∠4
∴ △AOB≌△COD (ASA)
∴ OA=OC,OB=OD
三、实践应用
例5 如图,在ABCD中,已知对角线AC和BD相交于点O,△ AOB的周长为15,AB = 6,那么对角线AC与BD的和是多少?
解 ∵AO + BO + AB = 15,又AB = 6,
∴AO + BO = 15-6 = 9.
又∵四边形ABCD是平行四边形,
∴AO = CO,BO = DO(平行四边形的对角线互相平分).
即AC + BD = 2AO + 2 BO = 2(AO + BO)
=2×9 = 18.
例6 如图,□ABCD的对角线AC,BD交于点O。
EF过点O且与边AB、CD分别交于点E、F.求证:OE=OF.
证明: ∵ 四边形ABCD是平行四边形
∴OB=OD
又∵AB∥CD,
∴∠EBO=∠FDO.
又∵∠BOE=∠DOF,
∴ΔBEO≌ ΔDFO.
∴OE=OF
例(补充)已知ABCD中,对角线AC,BD相交于点O,说明S△ABC= S△DBC.
( http: / / www.21cnjy.com )
解 过点A作AE⊥BC于点E、过点D作DF⊥BC交BC的延长线于点F.
∵AD∥BC, AE⊥BC,DF⊥BC,
∴AE = DF(平行线之间的距离处处相等),
∴,
即S△ABC= S△DBC.
四、交流反思
师 通过这几节课的讨论与学习,我们的收获真不小,已掌握了平行四边形的哪些特征,你能回想出来吗?
1.平行四边形的对边平行且相等;
2.平行四边形的对角相等;
3.平行四边形的对角线互相平分;
4.平行线之间的距离处处相等.
五、检测反馈
1.已知在ABCD中,两条对角线AC,BD相交于点O,指出图形中相等的线段.
( http: / / www.21cnjy.com )
2.如图,如果直线 l1 ∥l2, ( http: / / www.21cnjy.com )那么△ABC的面积和△DBC的面积是相等的,你能说出理由吗?你还能在这两条平行线l1 、l2之间画出其他与△ABC面积相等的三角形吗?
( http: / / www.21cnjy.com )
3.ABCD中, 对角线AC,BD相交于点O,已知AO比AB短2cm,BO比AB长2cm,BO是AO的2倍,求AC,BD的长.
4.如图,ABCD中,AE、CF分别平分∠BAD和∠BCD,试说明AC、EF互相平分.
( http: / / www.21cnjy.com )18.2 平行四边形的判定(2、3)
教学目的:
1、掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;
3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力;
教学重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。
教学难点:判定定理的证明方法及运用。
教学过程:
一.复习导入
1.用定义法证明一个四边形是平行四边形时,要什么条件?
2.用所学的判定方法一、二判定一个四边形的平行四边形的条件是什么?
3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?
二、新课讲解:
设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么?
活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形。
判定方法三:对角线互相平分的四边形是平行四边形。
这个方法的前提是什么?结论又是什么?
已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。
求证:四边形ABCD是平行四边形。
分析:证明这个四边形是平 ( http: / / www.21cnjy.com )行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)(3)一组对边平行且相等。
板书证过程。
小结:由刚才证明可得,只要有对角线互相平分,可判定这个四边形是平行四边形。
几何语言表达:
∵OA=OC, OB= OD
∴四边形ABCD是平行四边形
例题讲解:课本P86例2。
分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。
设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么?
A B
已知:在四边形ABCD中,∠A =∠C
∠B=∠D。 D C
求证:四边形ABCD是平行四边形(让学生板书,然后小结)
练习:延长三角形ABC的中线BD至E,
使DE=BD,连结AE、CE,如图,
求证:∠BAE=∠BCE。
证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得∠BAE=∠BCE。
本课小结:目前,我们研究平行四边形的哪些性质和判定:
平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;
平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形。
作业布置:
1、熟记判定定理;
2、课本作业。八年级数学(下册)教案
18.1 平行四边形的性质
课题 18.1平行四边形的性质(3课时)
备课人 授课时间 年 月 日 周 星期
教学目标 1.认识平行四边形是中心对称图形。 2.理解平行四边形其边、角之间的位置关系和数量关系。 3.理解并掌握平行四边形的特征。 4.能灵活运用平行四边形的特征并进行简单的推理证明。
教学重点 平行四边形的特征与性质的探索过程。
教学难点 发展学生的合情推理能力。
教 学 设 计(第1课时)
教学内容及教师活动 学生活动 增减备注
导入 1.平行四边形是同学们常见的平面图形,你见过那些物体具有平行四边形的形状 2.你能从如图所示的图形中找出平行四边形吗 ( http: / / www.21cnjy.com )讲解新课 1.按课本第73页的“探索”画图。2.剪下平行四边形,沿平行四边形的各边再在一 ( http: / / www.21cnjy.com )张纸上画一个平行四边形,各顶点记为A、B、C、D。通过连结对角线得交点O,用一枚图钉穿过点O,把其中一个平行四边形绕点。旋转,观察旋转180°后的图形与原来的图形是否重合。重复旋转几次,看看是否得到同样的结果。 问题1:平行四边形是否是中心对称图形 问题2:请说出平行四边形边、角之间的位置关系和数量关系。 (出题的目的在于激发学生的积极性,培养学生的数学思维能力。) 3.小组讨论,探索结果。 平行四边形的对边相等,对角相等。 (整个过程注意引导学生观察、思考、发现问题。有的学生可能发现对角线互相平分,要及时鼓励和肯定,表扬学习积极性较强的学生。)例题解析 例1 如图,在平行四边形ABC ( http: / / www.21cnjy.com )D中,已知∠A=40°,求其他各个内角的度数。 (该题可以将∠A=40°改为∠B=140°,培养学生的发散思维能力。) 2.拓展延伸。如图,在平行四边形ABCD中,已知∠BAC=20°,求各内角的度数。例2 如图,在平行四边形ABCD中,已知AB=8,周长等于24,求其余三条边的长。巩固练习课本第75页练习第1、2、3题。课堂小结这节课你有什么收获 学到了什么 还有什么疑问吗 学生完成学生动手并分组讨论结果讲述探索的结果、过程和根据学生黑板展示
作业设计 课本第80页习题18.1的第1、2题。
板书设计 18.1平行四边的性质平行四边形性质 例题1 学生练习1 2 例题2
教学反思
18.1 平行四边形的性质
课题 18.2平行四边的性质
备课人 授课时间 年 月 日 周 星期
教学目标 1.进一步认识平行四边形是中心对称图形。 2.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点 利用平行四边形的特征与性质,解决简单的推理与计算问题
教学难点 发展学生的推理能力
教 学 设 计(第2课时)
教学内容及教师活动 学生活动 增减备注
导入 1.平行四边形的特征:对边( ),对角( )。2.如图,在平行四边形A ( http: / / www.21cnjy.com )BCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度 为什么 (让学生回忆平行四边形的特征。) 3.在方格纸上画两条互相 ( http: / / www.21cnjy.com )平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。二、新课解析P75例题3(引导学生得出结论)P76例题4(本题引导学生分析后,让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)三、巩固练习P76 练习1、2、3四、课堂小结 学生分析代表上黑板书写,其他同学练习本
作业设计 P80 习题18.1 3、4题
板书设计 18.1平行四边形性质性质: 例题4 学生展示 例题3
教学反思
18.1 平行四边形的性质
课题 18.1平行四边形的性质
备课人 授课时间 年 月 日 周 星期
教学目标 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.培养学生的推理论证能力和逻辑思维能力.
教学重点 平行四边形对角线互相平分的性质,以及性质的应用.
教学难点 综合运用平行四边形的性质进行有关的论证和计算.
教 学 设 计(第3课时)
教学内容及教师活动 学生活动 增减备注
复习导入(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是).②角:平行四边形的对角相等,邻角互补. 边:平行四边形的对边相等. 二、新课讲解请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平分三、例题解析教材77页例题5例题6补充例题(选用) 已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在 ABCD中,AB∥CD,∴ ∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴ △AOE≌△COF(ASA).∴ OE=OF,AE=CF(全等三角形对应边相等).∵ ABCD,∴ AB=CD(平行四边形对边相等).∴ AB—AE=CD—CF. 即 BE=FD.※【引申】若条件都不变,将EF转动到 ( http: / / www.21cnjy.com )图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由. ( http: / / www.21cnjy.com )  ( http: / / www.21cnjy.com )  ( http: / / www.21cnjy.com )巩固练习教材P78页1、2、3题五、课堂小结 探索归纳
作业设计 P80 习题18.1 5、6题
板书设计 18.1平行四边形的性质平行四边形性质 例题6 学生练习性质定理3 例题5 补充例题
教学反思
18.2平行四边形的判定
课题 18.2平行四边的判定(2课时)
备课人 授课时间 年 月 日 周 星期
教学目标 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题.
教学重点 平行四边形的判定方法及应用.
教学难点 平行四边形的判定定理与性质定理的灵活应用.
教 学 设 计(第1课时)
教学内容及教师活动 学生活动 增减备注
一、课堂导入回顾平行四边的性质定理及定义1. 什么叫平行四边形?平行四边形有什么性质? 2. 将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)根据平行四边形的定义,我们研究了平行四 ( http: / / www.21cnjy.com )边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?二、新课讲解平行四边形的判定:(定义法):两组对边分别平行的四边形的平边形。几何语言表达定义法:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。(平行四边形判定定理):(一)两组对边分别相等的四边形是平行四边形。设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,AB=CD,BC=DA。 求证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。 板书证明过程。小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?活动:课本探究内容,并用事准备好的纸条( ( http: / / www.21cnjy.com )纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)小结:平行四边形判定方法为:平行四边形判定定理2:一组对边平行且相等的四边形是平行四边形前提:若一个四边形有一组对边平行且相等。结论:这个四边形是一个平行四边形。如图用几何语言表达为:∵AB=CD 且AB∥CD∴四边形ABCD是平行四边形平行且相等可用符号“ ”,读作“平行且相等”。∵AB CD ∴四边形ABCD是平行四边形三 例题解析 P84 例题1 ABCD中,点E、F分别在对边BC和DA上,且AF=CE。求证:四边形AECF是平行四边形。四、巩固练习 P86 练习 1、2、3小结今天我们主要研究了利用边的关系来判定平行四边形,注意满足两个条件。 注意:若一组对边平行,另一组对边相等,是不可以判定为平行四边形的,它是梯形。 学生口答,教师板书学生分析三种判定方法使用哪种较为简捷2、3题学生代表黑板展示,其他练习本上练习
作业设计 p91 习题18.2 3、4题
板书设计 18.2平行四边的判定定义判定 定理证明 学生展示判定定理1 例1判定定理2
教学反思
课题 18.2平行四边形的判定
备课人 授课时间 年 月 日 周 星期
教学目标 1、掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;2.理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;3.培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力。
教学重点 理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理
教学难点 判定定理的证明方法及运用
教 学 设 计(第2课时)
教学内容及教师活动 学生活动 增减备注
复习导入1.用定义法证明一个四边形是平行四边形时,要什么条件?2.用以前所学的判定定理判定一个四边形的平行四边形的条件是什么?3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?4. P85试一试 尺规作图二、新课讲解接试一试设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么?(平行四边形判定定理):(三):对角线互相平分的四边形是平行四边形。已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。求证:四边形ABCD是平行四边形。分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)板书证过程。w 小结:由刚才证明可得判定方法:(平行四边形的判定定理3):对角线互相平分的四边形是平行四边形。几何语言表达:∵OA=OC, OB= OD ∴四边形ABCD是平行四边形三、例题解析教材86页例题2 在ABCD中,点E、F是对角线AC上的两点,且AE=CF。求证:四边形BFDE是平行四边形。例题3例题4(P88)四边形ABCD中∠A=∠C,∠B=∠D。求证:四边形ABCD是平行四边形设问:若是两组对角分别相等的四边形,是 ( http: / / www.21cnjy.com )不是平行四边形?前提是什么?结论是什么? 求证:四边形ABCD是平行四边形巩固练习教材P89页1、2、3题五、课堂小结 目前所学平行四边形的哪些性质和判定:平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形; 学生分析例题3以前为判定,学生类比思考
作业设计 P90 习题18.2 2、5题
板书设计 18.2平行四边形的判定平行四边形判定 例题2 学生练习判定定理3对角判定 例题4定理证明
教学反思
A
B
C
D
1
2
3
4
A
B
C
D