四清导航(华东师大版)八年级数学下册教案:19章矩形、菱形与四边形(6份打包)

文档属性

名称 四清导航(华东师大版)八年级数学下册教案:19章矩形、菱形与四边形(6份打包)
格式 zip
文件大小 190.3KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2016-01-03 22:48:54

文档简介

20.1.1平均数
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错 ( http: / / www.21cnjy.com )误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P13 ( http: / / www.21cnjy.com )6的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P137例1的作用如下:
(1)、解决例1要用到加权平均数公式 ( http: / / www.21cnjy.com ),所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导 ( http: / / www.21cnjy.com )致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P138例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:
班级 1班 2班 3班 4班
参考人数 40 42 45 32
平均成绩 80 81 82 79
求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?
=(79+80+81+82)=80.5
五、例习题分析:
例1和例2均为计算数据加权平均数型 ( http: / / www.21cnjy.com )问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:
学生 作业 测验 期中考试 期末考试
小关 80 75 71 88
小兵 76 80 68 90
2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)
寿命 450 550 600 650 700
只数 20 10 30 15 25
求这些灯泡的平均使用寿命?
答案:1. =79.05 =80 2. =597.5小时
七、课后练习:
1、在一个样本中,2出现了x次,3出现了x次,4出现了x次,5出现了x次,则这个样本的平均数为 .
2、某人打靶,有a次打中环,b次打中环,则这个人平均每次中靶 环。
3、一家公司打算招聘一名部门经理, ( http: / / www.21cnjy.com )现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:
应聘者 笔试 面试 实习
甲 85 83 90
乙 80 85 92
试判断谁会被公司录取,为什么?
4、在一次英语口试中,已知5 ( http: / / www.21cnjy.com )0分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
答案:1. 2. 3.=86.9 =96.5
乙被录取 4. 39人
20.1.3加权平均数(第二课时)
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详 ( http: / / www.21cnjy.com )细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时 ( http: / / www.21cnjy.com )间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
所用时间t(分钟) 人数
0<t≤10 4
0<≤ 6
20<t≤20 14
30<t≤40 13
40<t≤50 9
50<t≤60 4
答案1.(1).15. (2)28. 2. 165
七、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
该公司每人所创年利润的平均数是多少万元?
2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
部门 A B C D E F G
人数 1 1 2 4 2 2 5
每人创得利润 20 5 2.5 2 1.5 1.5 1.2
年龄 频数
28≤X<30 4
30≤X<32 3
32≤X<34 8
34≤X<36 7
36≤X<38 9
38≤X<40 11
40≤X<42 2
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元 2.约29岁 3.60.54分贝
60
10
5
噪音/分贝
80
70
50
40
15
20
6
12
18
4
频数
10
90课题:19.1 矩形
矩形的性质
一、教材分析
矩形是最为常见的平行四边形,本节 ( http: / / www.21cnjy.com )教材先利用平行四边形活动木框进行演示,让学生以直观感知与操作确认为基础,通过适当的类比迁移,数学说理,分析矩形与平行四边形的联系与区别,揭示矩形的概念与所具有的性质。进而通过例题,练习题的分析与解答,让学生学会运用己得的矩形性质解决简单的推理与计算问题。本节教材注意强化对图形变换的理解,把矩形性质的形成、发展、应用的过程展现在学生面前,让学生通过动手实践、理性思考获得新知,给学生提供探索与交流的空间,培养学生提出问题、探究问题和解决问题的能力。
二、教学目标:
(一)知识目标: 掌握矩形的概念与有关性质,并会利用这些知识进行简单的推理与计算。
能力目标:在了解矩形与平 ( http: / / www.21cnjy.com )行四边形之间的关系,掌握、运用矩形性质的过程中,渗透数形结合、转化化归与方程思想,进一步提高学生的分析问题与解决问题的能力。
情感目标:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,让学生增强学习信心,体验探索与创造的快乐。
三、教学重点:
(一)矩形概念的理解;(二)掌握、运用矩形的性质。
四、教学难点:
(一)了解矩形与平行四边形的联系与区别。
(二)运用矩形的性质进行简单的推理与计算。
五、教学用具:
(一)学生:方格纸、小刀。
(二)教师:平行四边形活动木框、多媒体课件。
六、教学过程:
(一)复习引入
1.实物演示:展示平行四边形活动木框。
问题:它具有什么性质?
(平行四边形的性质:①中心对称图形;②两组对边平行且相等;③对角相等;④对角线互相平分)
2.推动平行四边形活动木框上边的D点
问题:你发现什么?(提问)
(1)木框随四个内角大小发生变动,但仍保持平行四边形形状。(为什么?)
(2)在推动过程中,当一个内角变为直角时,木框形状为特殊的平行四边形,即为小学已学过的长方形,现称为矩形。
(二)探究新知
1. 矩形与平行四边形的联系
由上面教学过程知:有一个角是直角的平行四边形是矩形。
2.矩形的性质
(1)矩形既然为特殊的平行四边形,则它必然是中心对称图形,故具备平行四边形的所有性质。
(2)问题:矩形除了上述的性质外,本身还有什么独有的性质呢?
①它是否为轴对称图形?
动手操作:(学生用课本后面方 ( http: / / www.21cnjy.com )格纸画出并剪下矩形,发现它是轴对称图形,有两条对称轴,即两条通过对边中点的直线)
(学生操作,教师演示)
②通过折叠得到矩形独有性质:四个角是直角;对角线相等且互相平分。
(3)总结出矩形性质:①既是中心对称图形,又是轴对称图形;②两组
对边平行且相等;③四个角都为直角;③对角线相等且互相平分。
3.矩形性质的应用
(1)例题:(课本P100 练习1、例1改编题)
如图,在矩形ABCD中,AC与BD相交于O.
①在图中找出相等的线段与相等的角;
②若△AOB、△BOC、△OCD和△AOD四个小三角形的周长之和为86cm,AC的长为13cm,试求矩形的周长。
(先让学生独立探索,再教师引导,生生、师生合作交流)
(2)练习(课本P100例2 改编题)
如图,在矩形ABCD中,两邻边AB、BC之比为3:4,
矩形的周长为28.①求AC之长;②作BE⊥AC于E,试求BE之长。
(先让学生独立探索,再教师引导,生生、师生合作交流)
(三)课堂小结
1.矩形是如何从平行四边形演变而来的?
四边形、平行四边形、矩形的从属关系(出示投影片)
有一个角
四边形 两组对边分别平行 平行四边形
是直角
2.矩形的性质有哪些?
①既是中心对称图形,又是轴对称图形;②两组对边平行且相等;③四个角都为直角;④对角线相等且互相平分。
(先让学生研讨交流,尔后师生一齐归纳小结)
3. 矩形性质的应用。
(四)布置作业:
1.课本P101 练习1、2、3
(选作题):
如图,用8块相同的小矩形地砖拼成一个大矩形,若小矩形地砖两邻边之差为30cm,试求大矩形的周长。
矩形19.3 正方形
一、教学目的
1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
2.理解正方形与平行四边形、矩形 ( http: / / www.21cnjy.com )、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
二、重点、难点
1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
三、例题的意图分析
本节课安排了三个例题,例1是教材P11 ( http: / / www.21cnjy.com )1的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:
①对角线相等的菱形是正方形吗?为什么?
②对角线互相垂直的矩形是正方形吗?为什么?
③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
④能说“四条边都相等的四边形是正方形”吗?为什么?
⑤说“四个角相等的四边形是正方形”对吗?
四、课堂引入
1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:
(1)有一组邻边相等的平行四边形 (菱形)
(2)有一个角是直角的平行四边形 (矩形)
2.【问题】正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
所以,正方形具有矩形的性质,同时又具有菱形的性质.
五、例习题分析
例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
证明:∵  四边形ABCD是正方形,
∴  AC=BD, AC⊥BD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).
∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且 △ABO ≌△BCO≌△CDO≌△DAO.
例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.
求证:OE=OF.
分析:要证明OE=OF,只 ( http: / / www.21cnjy.com )需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.
证明:∵ 四边形ABCD是正方形,
∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).
又 DG⊥AE, ∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.
∴ ∠EAO=∠FDO.
∴ △AEO ≌△DFO.
∴ OE=OF.
例3 (补充)已知:如图,四边形A ( http: / / www.21cnjy.com )BCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.
求证:四边形PQMN是正方形.
分析:由已知可以证出四边形PQMN是矩 ( http: / / www.21cnjy.com )形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.
证明:∵  PN⊥l1,QM⊥l1,
∴ PN∥QM,∠PNM=90°.
∵  PQ∥NM,
∴  四边形PQMN是矩形.
∵ 四边形ABCD是正方形
∴  ∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).
∴  ∠1+∠2=90°.
又  ∠3+∠2=90°, ∴  ∠1=∠3.
∴ △ABM≌△DAN.
∴ AM=DN. 同理 AN=DP.
∴ AM+AN=DN+DP
即 MN=PN.
∴  四边形PQMN是正方形(有一组邻边相等的矩形是正方形).
六、随堂练习
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;( )
②对角线互相垂直的矩形是正方形;( )
③对角线垂直且相等的四边形是正方形;( )
④四条边都相等的四边形是正方形;( )
⑤四个角相等的四边形是正方形.( )
已知:如图,四边形ABCD为正方形,E、F分别
为CD、CB延长线上的点,且DE=BF.
求证:∠AFE=∠AEF.
4.如图,E为正方形ABCD内一点,且△EBC是等边三角形,
求∠EAD与∠ECD的度数.
七、课后练习
1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.
求证:EA⊥AF.
2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.
3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.
第二十章 数据的整理与初步处理
20.1.1平均数
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的 ( http: / / www.21cnjy.com )错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P136的问题 ( http: / / www.21cnjy.com )是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P137例1的作用如下:
(1)、解决例1要用到加 ( http: / / www.21cnjy.com )权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同, ( http: / / www.21cnjy.com )直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P138例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:
班级 1班 2班 3班 4班
参考人数 40 42 45 32
平均成绩 80 81 82 79
求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?
=(79+80+81+82)=80.5
五、例习题分析:
例1和例2均为计算数据加权平均数 ( http: / / www.21cnjy.com )型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:
学生 作业 测验 期中考试 期末考试
小关 80 75 71 88
小兵 76 80 68 90
2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)
寿命 450 550 600 650 700
只数 20 10 30 15 25
求这些灯泡的平均使用寿命?
答案:1. =79.05 =80 2. =597.5小时
七、课后练习:
1、在一个样本中,2出现了x次,3出现了x次,4出现了x次,5出现了x次,则这个样本的平均数为 .
2、某人打靶,有a次打中环,b次打中环,则这个人平均每次中靶 环。
3、一家公司打算招聘一名部门经理, ( http: / / www.21cnjy.com )现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:
应聘者 笔试 面试 实习
甲 85 83 90
乙 80 85 92
试判断谁会被公司录取,为什么?
4、在一次英语口试中,已知 ( http: / / www.21cnjy.com )50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
答案:1. 2. 3.=86.9 =96.5
乙被录取 4. 39人
20.1.3加权平均数(第二课时)
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种 ( http: / / www.21cnjy.com )详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况 ( http: / / www.21cnjy.com ),对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
所用时间t(分钟) 人数
0<t≤10 4
0<≤ 6
20<t≤20 14
30<t≤40 13
40<t≤50 9
50<t≤60 4
答案1.(1).15. (2)28. 2. 165
七、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
该公司每人所创年利润的平均数是多少万元?
2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
部门 A B C D E F G
人数 1 1 2 4 2 2 5
每人创得利润 20 5 2.5 2 1.5 1.5 1.2
年龄 频数
28≤X<30 4
30≤X<32 3
32≤X<34 8
34≤X<36 7
36≤X<38 9
38≤X<40 11
40≤X<42 2
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元 2.约29岁 3.60.54分贝
A
B
C
D
E
F
60
10
5
噪音/分贝
80
70
50
40
15
20
6
12
18
4
频数
10
9019.1.2 矩形的判定
教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.
教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式.
教学重点:矩形的判定.
教学难点:矩形的判定及性质的综合应用.
教学步骤:
一.复习提问:
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
二.引入新课
设问:
1.矩形的判定.
2.矩形是有一个角是直角的平行四边形,在 ( http: / / www.21cnjy.com )判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程.)
方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生一道写出证明过程.)
归纳矩形判定方法(由学生小结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
3.矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
4.矩形知识的综合应用.(让学生思考,然后师生共同完成)
例4:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
证明:∵ABCD为矩形
∴AC=BD
∴AC、BD互相平分于O
∴AO=BO=CO=DO
∵AE=BF=CG=DH
∴EO=FO=GO=HO
又HF=EG
∴EFGH为矩形
三.小结:
(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线相等.
判定方法3的两个条件是:①是四边形,②有三个直角.
矩形的判定方法有哪些?
一个角是直角的平行四边形
对角线相等的平行四边形 -—是矩形.
有三个角是直角的四边形
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
补充例题
例:判断
(1)两条对角线相等四边形是矩形( )
(2)两条对角线相等且互相平分的四边形是矩形( )
(3)有一个角是直角的四边形是矩形( )
(4)在矩形内部没有和四个顶点距离相等的点( )
分析及解答:
(1)如图(1)四边形ABCD中,AC=BD,但ABCD不为矩形,∴×
(2)对角线互相平分的四边形即平行四边形,∴对角线相等的平行四边形为矩形∴√
(3)如图(2),四边形ABCD中,∠B=90°,但ABCD不为矩形 ∴×
(4)矩形对角线的交点O到四个顶点距离相等 ∴×, 如图(3),19.2.1 菱形的性质(一)
一、教学目的:
  1.掌握菱形概念,知道菱形与平行四边形的关系.
  2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.
  3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
  4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、重点、难点
1.教学重点:菱形的性质1、2.
  2.教学难点:菱形的性质及菱形知识的综合应用.
三、例题的意图分析
本节课安排了两个例题,例1是一 ( http: / / www.21cnjy.com )道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.
四、课堂引入
  1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行 ( http: / / www.21cnjy.com )四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形定义:有一组邻边相等的平行四边形叫做菱形.
【强调】 菱形(1)是平行四边形;(2)一组邻边相等.
让学生举一些日常生活中所见到过的菱形的例子.
五、例习题分析
例1 (补充) 已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
  求证:∠AFD=∠CBE.
证明:∵ 四边形ABCD是菱形,
∴  CB=CD, CA平分∠BCD.
∴  ∠BCE=∠DCE.又 CE=CE,
∴ △BCE≌△COB(SAS).
∴  ∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD, ∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2 (教材P108例2)略
六、随堂练习
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 .
2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.
4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
七、课后练习
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高.
2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.
19.2.2 菱形的判定(二)
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教 ( http: / / www.21cnjy.com )材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1 菱形的四条边都相等;
性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材P109的探究)用 ( http: / / www.21cnjy.com )一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1  对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2  四边都相等的四边形是菱形.
五、例习题分析
例1 (教材P109的例3)略
例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.
求证:四边形AFCE是菱形.
证明:∵  四边形ABCD是平行四边形,
∴  AE∥FC.
∴  ∠1=∠2.
又  ∠AOE=∠COF,AO=CO,
∴  △AOE≌△COF.
∴  EO=FO.
∴  四边形AFCE是平行四边形.
又  EF⊥AC,
∴  AFCE是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.
求证:四边形CEHF为菱形.
略证:易证CF∥EH,CE=E ( http: / / www.21cnjy.com )H,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是 ;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线 的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是 ( ).
(A)两条对角线相等 (B)两条对角线互相垂直
(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
3.做一做:
设计一个由菱形组成的花边图案 ( http: / / www.21cnjy.com ).花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形. 19.1.1 矩形的性质(一)
一、教学目标:
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2.会初步运用矩形的概念和性质来解决有关问题.
3.渗透运动联系、从量变到质变的观点.
二、重点、难点
1.重点:矩形的性质.
2.难点:矩形的性质的灵活应用.
三、例题的意图分析
例1是教材P104的例1,它是矩形性质的 ( http: / / www.21cnjy.com )直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.
四、课堂引入
1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.
① 随着∠α的变化,两条对角线的长度分别是怎样变化的?
② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
( http: / / www.21cnjy.com )
操作,思考、交流、归纳后得到矩形的性质.
矩形性质1  矩形的四个角都是直角.
矩形性质2  矩形的对角线相等.
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.
五、例习题分析
例1 (教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.
分析:因为矩形是特殊的平行四边形,所以它具 ( http: / / www.21cnjy.com )有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.
解:∵ 四边形ABCD是矩形,
∴ AC与BD相等且互相平分.
∴ OA=OB.
又 ∠AOB=60°,
∴ △OAB是等边三角形.
∴ 矩形的对角线长AC=BD = 2OA=2×4=8(cm).
例2(补充)已知:如图 ,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.
分析:(1)因为矩形四个角都是直角,因此矩 ( http: / / www.21cnjy.com )形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.
略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:,解得x=6. 则 AD=6cm.
(2)“直角三角形斜边上的 ( http: / / www.21cnjy.com )高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB= AD×AB,解得 AE= 4.8cm.
例3(补充) 已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC. 求证:CE=EF.
分析:CE、EF分别是BC,A ( http: / / www.21cnjy.com )E等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.
证明:∵ 四边形ABCD是矩形,
∴ ∠B=90°,且AD∥BC. ∴ ∠1=∠2.
∵ DF⊥AE, ∴ ∠AFD=90°.
∴ ∠B=∠AFD.又 AD=AE,
∴ △ABE≌△DFA(AAS).
∴ AF=BE.
∴ EF=EC.
此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.
六、随堂练习
1.(填空)
(1)矩形的定义中有两个条件:一是 ,二是 .
(2)已知矩形的一条对角线与一边的 ( http: / / www.21cnjy.com )夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为 、 、 、 .
(3)已知矩形的一条对角线长为10 ( http: / / www.21cnjy.com )cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm, cm, cm.
2.(选择)
(1)下列说法错误的是( ).
(A)矩形的对角线互相平分 (B)矩形的对角线相等
(C)有一个角是直角的四边形是矩形 (D)有一个角是直角的平行四边形叫做矩形
(2)矩形的对角线把矩形分成的三角形中全等三角形一共有( ).
(A)2对 (B)4对 (C)6对 (D)8对
3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.
七、课后练习
1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为( ).
(A)12cm (B)10cm (C)7.5cm (D)5cm
2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.
4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.
19.1.2 矩形的判定(二)
一、教学目标:
  1.理解并掌握矩形的判定方法.
  2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的 ( http: / / www.21cnjy.com )一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入  
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一 ( http: / / www.21cnjy.com )个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; (×)
(2)有四个角是直角的四边形是矩形; (√)
(3)四个角都相等的四边形是矩形; (√)
(4)对角线相等的四边形是矩形; (×)
(5)对角线相等且互相垂直的四边形是矩形; (×)
(6)对角线互相平分且相等的四边形是矩形; (√)
(7)对角线相等,且有一个角是直角的四边形是矩形; (×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形. (√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2 (补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵  四边形ABCD是平行四边形,
∴ AO=AC,BO=BD.
∵  AO=BO,
∴  AC=BD.
∴  ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵  AB=4cm,AC=2AO=8cm,
∴ BC=(cm).
例3 (补充) 已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,
∴ AD∥BC.
∴ ∠DAB+∠ABC=180°.
又 AE平分∠DAB,BG平分∠ABC ,
∴ ∠EAB+∠ABG=×180°=90°.
∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是( ).
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
( http: / / www.21cnjy.com )
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.