/ 让教学更有效 精品试卷 | 数学
3.4有趣的算式
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.找规律,填一填。
1×8+1=9
12×8+2=98
123×8+3=987
1234×8+4=9876
( )×8+5=( )
2.用0—9十个自然数可以排出无限多个数,如果精心安排他们的位置,经过运算的升华,会发现许多有趣的宝塔算式,请你接着在下边的宝塔算式下面再加一层。
3×9+6=33
33×99+66=3333
333×999+666=333333
3333×9999+6666=33333333
( )
3.根据37037×3=111111,37037×6=222222,37037×9=333333,填空:
37037×12=( ),37037×( )=666666。
4.一个整数乘13后,乘积的最后三位数是123,那么,这个整数最小是( )。
5.1×9+2=11 12×9+3=111 123×9+4=1111
1234×9+5=( ) 12345×9+( )=( )
6.奇妙的算式,请根据规律填空.
5×5=25; 95×95=9025; 995×995=990025;
9995×9995=( ); 99995×99995=( )21cnjy.com
二、选择题
7.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.如图两个图框是用法国“小九九”计算7×8和8×9的两个示例.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( ) 2·1·c·n·j·y
A.2,3 B.3,3 C.2,4 D.3,4
8.2×9=18 22×99=2178 222×9999=221778 2222×9999=22217778 22222×99999=( )21·世纪*教育网
A.22117788 B.2222177778 C.222221778 D.2222177788
9.某食品公司给学校食堂送牛肉、羊肉、鱼肉、鸡肉.如果按顺序第一天送牛肉,第7天送的是( )
A.牛肉 B.羊肉 C.鱼肉 D.鸡肉
10.106与90的和除以106与90的差,商是多少 正确的列式是( ).
A.106+90÷106-90 B.106+90÷(106-90) C.(106+90)÷106-90 D.(106+90)÷(106-90)【来源:21cnj*y.co*m】
11.循环小数的小数点后第2012位上的数字是( )
A.4 B.5 C.6 D.8
三、判断题
12.在乘法里,两个因数都扩大到原来的10倍,积也扩大到原来的10倍。( )
13.根据3×4=12,33×34=1122,333×334=111222,3333×3334=11112222,可以推算出33333×33334=1111122222。( )2-1-c-n-j-y
14.算式9×6=54,99×96=9504,999×996=995004;通过这三个算式不用计算就可以得出999999×999996=999995000004。( )【版权所有:21教育】
15.根据99999×1=99999,99999×2=199998,99999×3=299997,可以直接得出99999×4=399996。( )
16.在乘法里,两个乘数同时乘10,积不变。( )
四、解答题
17.对于任意一个自然数n,当n为奇数时,加上121,当n为偶数时,除以2,这算一次操作.现在对三位数241连续进行操作,在操作过程中是否会出现100,为什么?
18.寻找神秘的四位数。
在0~9十个数字中,任意选择四个数字,组成最大的数和最小的数,如选2,9,8,4这四个数字,组成最大的数是9842,最小的数是2489。21教育网
然后两数相减,并把得数的四个数字重新组成一个最大的数和最小的数,再次相减……
在这样不断重复的过程中,你能找到一个神秘的四位数吗?
将神秘的四位数填在下面的钥匙上,去开启智慧城堡的大门吧!
19.任意一个三位数,百位数字乘个位数字的积作为下一个数字的百位.百位数字乘十位数的积作为下一个数的十位数字,十位数字乘个位数字的积作为下一个数的十位数字.在上面每次相乘的过程中,如果积大于9,则将积的个位数与十位数相加,若和仍大于9,则继续相加直到得出一位数.
重复这个过程.
例如,以823开始,运算以上规则依次可得到:832,766,669,999,…
(1)你选择的三位数是什么?你得到了什么结论?
(2)换个数试试,你有什么进一步的猜想?
参考答案:
1. 12345 98765
【分析】观察算式可知,第一个因数最高位上是1,后面数位上的数都比它前一数位上的数多1,第二个因数是8,再加上第一个因数个位上的数,算式结果的位数与第一个因数的位数相同,最高位上是9,后面数位上的数比它前一数位上的数少1,据此即可解答。
【详解】1×8+1=9
12×8+2=98
123×8+3=987
1234×8+4=9876
12345×8+5=98765
2.33333×99999+66666=3333333333
【分析】
每个算式都是乘法与加法的混合运算,第一个算式的第一个乘数是1个3,第二个算式的第一个乘数是2个3,第三个算式的第一个乘数是3个3,由此可知第五个算式的第一个乘数是5个3,再看乘号右边的数,第一个算式中这个数是1个9,第二个算式中这个数是2个9,第三个算式中这个位置的数是3个9,由此可知第五个算式中这个位置的数应是5个9,接着看加号右边的数,第一个算式中这个数是1个6,第二个算式中这个数是2个6,第三个算式中这个位置的数是3个6,由此可知第五个算式中这个位置的数是5个6,最后看每个算式的得数,得数的位数不同,但是各个数位的数字都是3,第一个算式的得数是2个3,第二个算式的得数是4个3,第三个算式的得数是6个3,第四个算式的得数是8个3,那么第五个算式的得数应是10个3,据此写出第五个算式。21世纪教育网版权所有
【详解】3×9+6=33
33×99+66=3333
333×999+666=333333
3333×9999+6666=33333333
33333×99999+66666=3333333333
3. 444444 18
【分析】观察算式可知,第一个因数是37037,第二个因数是3的几倍,积就是111111的几倍,据此即可解答。21·cn·jy·com
【详解】根据37037×3=111111,37037×6=222222,37037×9=333333,填空:
37037×12=444444,37037×18=666666。
4.471
【详解】略
5. 11111 6 111111
【分析】观察这组算式,都是乘加算式,第一个乘数分别是1、12、123、1234…是连续的自然数组成,数字个数比加数少1,乘法算式中第二个乘数都是9,得数都是由1组成的,1的个数等于第二个加数。www.21-cn-jy.com
【详解】1×9+2=11 12×9+3=111 123×9+4=1111
1234×9+5=(11111) 12345×9+(6)=(111111)
【点睛】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。www-2-1-cnjy-com
6. 99900025 9999000025
【分析】通过观察,两个5相乘是25;两个十位数字是9,个位数字是5的数相乘,结果是9025,在25的前面加了一个9和一个0;两个百位数字和十位数字是9,个位数字是5的数相乘,结果是990025,在25的前面加了两个9和两个0;以此类推,两个因数个位数字是5,在5的前面加几个9,则积是在25的前面加几个9和几个0;因此得解。
【详解】认真观察5×5=25
95×95=9025
995×995=990025
得出规律,因数在5的前面有几个9,则在积中25的前面就有几个9和几个0,所以,9995×9995=99900025
99995×99995=9999000025
【点睛】认真观察,得出规律,是解决此题的关键。
7.C
【详解】解:要计算7×9,左手应伸出手指: 7﹣5=2(个);
右手应伸出手指:
9﹣5=4(个);
故答案选:C.
【分析】按照题中示例可知:要计算a×b,左手应伸出(a﹣5)个手指,未伸出的手指数为5﹣(a﹣5)=10﹣a;右手应伸出(b﹣5)个手指,未伸出的手指数为5﹣(b﹣5)=10﹣b.
8.B
【分析】2×9=18 22×99=2178 222×9999=221778 2222×9999=22217778 可知:乘数每多几个2和9,它们的乘积1前面就多几个2,8前面就多几个7,仔细观察给出的例子,找出其中蕴含的规律,据规律解答。21*cnjy*com
【详解】2×9=18
22×99=2178
222×9999=221778
2222×9999=22217778
22222×99999=2222177778
故答案为:B
【点睛】此题属于根据算式找规律,认真观察前面的算式找出因数与积之间的关系是解题关键。
9.C
【详解】前四天分别送四种肉,第五天送牛肉,第六天送羊肉,第七天送鱼肉.
故答案为C
由于天数比较少,很快就能判断出前四天送的物品,然后依次判断出第五天、六天、七天送的物品即可.
10.D
【详解】【解答】和(106+90)除以差(106-90),故正确答案为D.
【分析】本题关键是理解“和除以差”.
11.D
【分析】用2012减去2除以循环节的位数,如果能整除,第2012位上的数字是循环节末位上的数字;如果不能整除,余数是几,就从循环节的首位,数出几位,该位上的数字就是第2012位上的数字,由此解答。【出处:21教育名师】
【详解】的循环节是5位数
(2012﹣2)÷5=402
那么小数点后第2012位上的数字是循环节的末位上的数字,也就是8。
故答案为:D
12.×
【分析】积的变化规律:如果一个因数乘或除以一个数(0除外),另一个因数不变,那么积也乘或除以同一个数。据此解答即可。【来源:21·世纪·教育·网】
【详解】两个因数都扩大到原来的10倍,积扩大到原来的100倍。题干说法错误。
故答案为:×
【点睛】熟练掌握积的变化规律是解决本题的关键。
13.√
【分析】观察这组算式,3×4=12,33×34=1122,333×334=111222,3333×3334=11112222,每个乘数前面添上一个3,积的前面就添一个1,积的后面就添1个2,也就是第一个乘数中3的个数和积中1的个数和2的个数相同。21教育名师原创作品
【详解】根据3×4=12,33×34=1122,333×334=111222,3333×3334=11112222,可以推算出33333×33334=1111122222。
故答案为:√
【点睛】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。
14.正确
【详解】规律:第一个因数依次增加一个数字9,第二个因数6前面依次增加一个数字9,结果是5前面是9,5和4中间是0,9的个数和0的个数等于第二个因数中9的个数。
15.√
【分析】观察算式可知,第一个因数相同,都是99999。第二个因数分别是1,2,3,4…。除了第一个乘积99999是五位数,其他几个式子的结果都是六位数,首、末两数之和是9,从第二个算式开始,积的首位都比第二个因数小1,中间的4个数字都是9,据此即可写出各算式的积。
【详解】根据99999×1=99999,99999×2=199998,99999×3=299997,可以直接得出99999×4=399996。
故答案为:√
【点睛】此题是根据算式找规律,认真观察前几个算式即可发现规律,然后再根据规律直接写出另外几个算式的积。
16.×
【分析】如果一个乘数不变,另一个乘数乘或除以几,(0除外),积就乘或除以相同的数。
【详解】在乘法里,两个乘数同时乘10,积就乘(10×10),也就是积乘100。
故答案为:×
【点睛】此题的解题关键是灵活应用积的变化规律求解。
17.解:241+121=362,362÷2=181;
181+121=302,302÷2=151;
151+121=272,272÷2=136,136÷2=68,68÷2=34,34÷2=17;
17+121=138,138÷2=69;
69+121=190,190÷2=95;
95+121=216,216÷2=108,108÷2=54,54÷2=27;
27+121=148,148÷2=74,74÷2=37;
37+121=158,158÷2=79;
79+121=200,200÷2=100.
答:在操作过程中会出现100.
【详解】121=11×11,241不能被11、121整除,因此加121,仍不能被11整除,折半时不能整除的性质不变.因此241经这样的操作,除11的倍数显然不出现外,其他数可能出现.用列举的方法,操作到第9次时,出现了100.21*cnjy*com
18.6174;图见详解
【分析】任意选两组四个数字:2、4、7、8以及3、6、2、1,将这两组数分别组成最大的四位数和最小的四位数,再分别相减,然后将结果再分别组成一个最大的数和最小的数,再分别相减……找出相同的这个四位数,就是神秘的四位数;据此解答。
【详解】选2、4、7、8:8742-2478=6264,6642-2466=4176,7641-1467=6174
选3、6、2、1:6321-1236=5085,8550-558=7992,9972-2799=7173,7731-1377=6354,6543-3456=3087,8730-378=8352,8532-2358=6174,7641-1467=6174
答:这个神秘的四位数是6174。
如图:
19.(1)我选择的三位数是123,依次可得到:326,963,999,999,999…
(2)根据题中规律,总是会得到一个相同的三位数999.
【详解】通过分析可知运算规律:百位数字乘个位数字的积作为下一个数字的百位.百位数字乘十位数的积作为下一个数的十位数字,十位数字乘个位数字的积作为 下一个数的十位数字.在上面每次相乘的过程中,如果积大于9,则将积的个位数与十位数相加,若和仍大于9,则急需相加直到得出一位数,据此解答即可.
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)