(共12张PPT)
6.2 频率的稳定性
铁岭市昌图育才实验学校 李洋洋
落地后会出现哪些情况?
针尖朝上
针尖朝下
活动一:做一做
(1)两人一组做20次掷图钉游戏,并将数据记录在下表中:
试验总次数
钉尖朝上次数
钉尖朝下次数
钉尖朝上频率(钉尖朝上次数/试验总次数)
钉尖朝下频率(钉尖朝下次数/试验总次数)
频率:在n次重复试验中,不确定事件A
发生了m次,则比值 称为事件A
发生的频率。
(2)累计全班同学的实验2结果,并将试验数据汇总填入下表:
试验总次数n 20 40 80 120 160 200 240 280 320 360 400
钉尖朝上次数m
钉尖朝上频率m/n
(3)根据上表完成下面的折线统计图:
20
40
80
120
200
240
160
320
280
0.2
400
360
1.0
0.6
0.8
0.4
钉尖朝上的频率
试验总次数
20
40
80
120
200
240
160
320
280
0.2
400
360
1.0
0.6
0.8
0.4
钉尖朝上的频率
试验总次数
(4)400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律?
结论:
在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.
频率的稳定性是由瑞士数学家雅布·伯努利(1654-1705)最早阐明的,他还提出了由频率可以估计事件发生的可能性大小。
数学史实
活动二:议一议
(1)通过上面的试验,你认为钉尖朝上和钉尖朝下的可能性一样大吗?你是怎样想的?
(2)小明和小丽一起做了1000次掷图钉的试验,其中有640次钉尖朝上。据此,他们认为钉尖朝上的可能性比钉尖朝下的可能性大。你同意他们的说法吗?
1、某射击运动员在同一条件下进行射击,结果如下表:
射击总次数n 10 20 50 100 200 500 1000
击中靶心的次数m 9 16 41 88 168 429 861
击中靶心的频率m/n
(1)完成上表;
(2)根据上表画出该运动员击中靶心的频率的折线统计图;
(3)观察画出的折线统计图,击中靶心的频率变化有什么规律?
巩固训练
0.9
0.8
0.82
0.88
0.84
0.858
0.861
频率具有稳定性
课堂总结:
通过本节课的学习,你了解了哪些知识?
课后作业:
教材 142页知识技能 1