1 用树状图或表格求概率 课件(24)

文档属性

名称 1 用树状图或表格求概率 课件(24)
格式 ppt
文件大小 722.0KB
资源类型 素材
版本资源 北师大版
科目 数学
更新时间 2016-01-11 10:25:56

文档简介

(共10张PPT)
用树状图和表格法求概率
成都市龙泉七中
驶向胜利的彼岸
真知灼见源于实践
议一议
2
小明对自己的试验记录进行了统计,结果如下:
因此小明认为,如果摸得第一张牌的牌面数字为1,那么摸第二张牌时,摸得牌面数字为2的可能性比较大.你同意小明的看法吗
只有参与,才能领悟
将全班同学的试验记录汇总,然后再统计一下!
第一张牌的牌面数字为1(16次)
摸得第二张牌的牌面数字为1(7次)
摸得第二张牌的牌面数字为2(9次)
真知灼见源于实践
想一想
3
事实上,在一次试验中,不管摸得第一张牌的牌面数字为几,摸第二张牌时,摸得牌面数字为1和2的可能性是相同的.
驶向胜利的彼岸
概率的等可能性
真知灼见源于实践
想一想
4
对于前面的摸牌游戏,一次试验中会出现哪些可能的结果 每种结果出现的可能性相同吗
我与他的结果不同:
驶向胜利的彼岸
频率的等可能性如何表示
对此你有什么评论?
会出现三种可能的结果:牌面数字和为2,牌面数字和为3,牌面数字和为4;每种结果出现的可能性相同.
会出现四种可能的结果:牌面数字为(1,1),牌面数字为(1,2),牌面数字为(2,1),牌面数字为(2,2).
每种结果出现的可能性相同.
是“玩家”就玩出水平
做一做
5
用树状图表示概率
驶向胜利的彼岸
实际上,摸第一张牌时,可能出现的结果是:牌面数字为1或2,而且这两种结果出现的可能性相同;摸第二张牌时,情况也是如此.因此,我们可以用右面的树状图或下面的表格来表示所有可能出现的结果:
开始
第一张牌的牌面数字
1
2
第二张牌的牌面数字
1
2
1
2
所有可能出现的结果
(1,1)
(1,2)
(2,1)
(2,2)
“悟”的功效
议一议
6
从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1),(1,2),(2,1),(2,2),而且每种结果出现的可能性相同.也就是说,每种结果出现的 概率都是1/4.
老师提示:
利用树状图或表格可以较方便地求出某些事件发生的概率.
驶向胜利的彼岸
用表格表示概率
第二张牌的牌面数字
第一张牌的牌面数字
1
1
2
(1,1)
(1,2)
2
(2,1)
(2,2)
行家看“门道”
例题欣赏
学以致用
例1 随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是多少
总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正),(正,反),(反,正),因此至少有一次正面朝上的概率是3/4.
开始






(正,正)
(正,反)
(反,正)
(反,反)
请你用列表的方法解答例1.
理性的结论源于实践操作
是真是假
从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次掷硬币,出现正面朝上的可能性大,还是反面朝上的可能性大,还是一样大 说说你的理由,并与同伴进行交流.
随堂练习
第4次掷硬币,出现正面朝上的可能性与反面朝上的可能性一样大.
回味无穷
利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.
小结 拓展
用树状图或表格表示概率
结束寄语
询问者智之本,思虑者智之道也.
下课了!