中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题22 图形的相似(含位似)
一、选择题
1. (2024四川内江)已知与相似,且相似比为,则与的周长比为( )
A. B. C. D.
2. (2023四川南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为,同时量得小菲与镜子的水平距离为,镜子与旗杆的水平距离为,则旗杆高度为( )
A. B. C. D.
3. (2022四川凉山)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
A. 9cm B. 12cm C. 15cm D. 18cm
4. (2024四川巴中)如图,是用12个相似的直角三角形组成的图案.若,则( )
A. B. C. D.
5. (2023四川内江)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为( )
A. 1 B. C. 2 D. 3
6. (2023四川遂宁)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点成位似关系,则位似中心的坐标为( )
A. B. C. D.
7.(2022四川遂宁) 如图,D、E、F分别是三边上的点,其中,BC边上的高为6,且DE//BC,则面积的最大值为( )
A. 6 B. 8 C. 10 D. 12
二、填空题
8. (2024四川成都市)如图,在中,,是的一条角平分线,为中点,连接.若,,则______.
9. (2024四川乐山)如图,在梯形中,,对角线和交于点O,若,则______.
10. (2023四川达州)如图,乐器上的一根弦,两个端点固定在乐器板面上,支撑点是靠近点的黄金分割点,支撑点是靠近点的黄金分割点,之间的距离为______.
11. (2022四川成都)如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.
三、解答题
12. (2024四川广元)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
13. (2022四川自贡)如图,用四根木条钉成矩形框,把边固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).
(1)通过观察分析,我们发现图中线段存在等量关系,如线段由旋转得到,所以.我们还可以得到= , = ;
(2)进一步观察,我们还会发现∥,请证明这一结论;
(3)已知,若恰好经过原矩形边的中点 ,求与之间的距离.
14. (2024四川甘孜)如图,在四边形中,,连接,过点作,垂足为,交于点,.
(1)求证:;
(2)若.
①请判断线段,的数量关系,并证明你的结论;
②若,,求的长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题22 图形的相似(含位似)
一、选择题
1. (2024四川内江)已知与相似,且相似比为,则与的周长比为( )
A. B. C. D.
【答案】B
【解析】本题主要考查了相似三角形的性质,熟知相似三角形周长之比等于相似比是解题的关键.
∵与相似,且相似比为,
∴与的周长比为,
故选B.
2. (2023四川南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为,同时量得小菲与镜子的水平距离为,镜子与旗杆的水平距离为,则旗杆高度为( )
A. B. C. D.
【答案】B
【解析】根据镜面反射性质,可求出,再利用垂直求,最后根据三角形相似的性质,即可求出答案.
【详解】如图所示,
由图可知,,,
∠ABC=∠CDE=90°
根据镜面的反射性质,
∴,
∴,
,
,
.
小菲的眼睛离地面高度为,同时量得小菲与镜子的水平距离为,镜子与旗杆的水平距离为,
,,.
.
.
故选:B.
【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.
3. (2022四川凉山)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
A. 9cm B. 12cm C. 15cm D. 18cm
【答案】C
【解析】根据平行得到,根据相似的性质得出,再结合,DE=6cm,利用相似比即可得出结论.
在△ABC中,点D、E分别在边AB、AC上,若DEBC,
,
,
,
,
,
,
,
,
故选:C.
【点睛】本题考查利用相似求线段长,涉及到平行线的性质、两个三角形相似的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解决问题的关键.
4. (2024四川巴中)如图,是用12个相似的直角三角形组成的图案.若,则( )
A. B. C. D.
【答案】C
【解析】本题考查的是相似三角形的性质,锐角三角函数的应用,规律探究;先求解,可得,再进一步探究即可;
∵12个相似的直角三角形,
∴,
,
∵,
∴,
,
,
∴,
故选C
5. (2023四川内江)如图,在中,点D、E为边的三等分点,点F、G在边上,,点H为与的交点.若,则的长为( )
A. 1 B. C. 2 D. 3
【答案】C
【解析】由三等分点的定义与平行线的性质得出,,,是的中位线,易证,得,解得,则.
【详解】、为边的三等分点,,
,,,
,是的中位线,
,
,
,
,即,
解得:,
,
故选:C.
【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.
6. (2023四川遂宁)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点成位似关系,则位似中心的坐标为( )
A. B. C. D.
【答案】A
【解析】根据题意确定直线的解析式为:,由位似图形的性质得出所在直线与BE所在直线x轴的交点坐标即为位似中心,即可求解.
【详解】由图得:,
设直线的解析式为:,将点代入得:
,解得:,
∴直线的解析式为:,
所在直线与BE所在直线x轴的交点坐标即为位似中心,
∴当时,,
∴位似中心的坐标为,
故选:A.
【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.
7.(2022四川遂宁) 如图,D、E、F分别是三边上的点,其中,BC边上的高为6,且DE//BC,则面积的最大值为( )
A. 6 B. 8 C. 10 D. 12
【答案】A
【解析】过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,设,根据,证明,根据相似三角形对应高的比等于相似比得到,列出面积的函数表达式,根据配方法求最值即可.
如图,过点A作AM⊥BC于M,交DE于点N,则AN⊥DE,
设,
,
,
,
,
,
,
当时,S有最大值,最大值为6.
【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.
二、填空题
8. (2024四川成都市)如图,在中,,是的一条角平分线,为中点,连接.若,,则______.
【答案】
【解析】连接,过E作于F,设,,根据直角三角形斜边上的中线性质和等腰三角形的性质证得,,,进而利用三角形的外角性质和三角形的中位线性质得到,,证明,利用相似三角形的性质和勾股定理得到;根据角平分线的定义和相似三角形的判定与性质证明得到,进而得到关于x的一元二次方程,进而求解即可.
【详解】连接,过E作于F,设,,
∵,为中点,
∴,又,
∴,,,
∴,,
∵,
∴,则,又,
∴,
∴,,
∴,
则;
∵是的一条角平分线,
∴,又,
∴,
∴
∴,则,
∴,即,
解得(负值已舍去),
故答案为:.
【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.
9. (2024四川乐山)如图,在梯形中,,对角线和交于点O,若,则______.
【答案】
【解析】本题考查了平行线间距离,相似三角形的判定与性质等知识.熟练掌握平行线间的距离,相似三角形的判定与性质是解题的关键.
设的距离为,则,即,证明,则,计算求解即可.
【详解】解:设的距离为,
∴,即,
∵,
∴,,
∴,
∴,
故答案为:.
10. (2023四川达州)如图,乐器上的一根弦,两个端点固定在乐器板面上,支撑点是靠近点的黄金分割点,支撑点是靠近点的黄金分割点,之间的距离为______.
【答案】
【解析】【分析】黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为,由此即可求解.
【详解】解:弦,点是靠近点的黄金分割点,设,则,
∴,解方程得,,
点是靠近点的黄金分割点,设,则,
∴,解方程得,,
∴之间的距离为,
故答案为:.
【点睛】本题主要考查线段成比例,掌握线段成比例,黄金分割点的定义是解题的关键.
11. (2022四川成都)如图,和是以点为位似中心的位似图形.若,则与的周长比是_________.
【答案】
【解析】根据位似图形的性质,得到,根据得到相似比为,再结合三角形的周长比等于相似比即可得到结论.
和是以点为位似中心的位似图形,
,
,
,
,
根据与的周长比等于相似比可得.
【点睛】本题考查相似图形的性质,掌握位似图形与相似图形的关系,熟记相似图形的性质是解决问题的关键.
三、解答题
12. (2024四川广元)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
【答案】(1)证明见解析 (2) (3)
【解析】【分析】(1)根据题意,由,,利用两个三角形相似的判定定理即可得到,再由相似性质即可得证;
(2)设,由(1)中相似,代值求解得到,从而根据与的相似比为求解即可得到答案;
(3)过点作的平行线交的延长线于点,如图1所示,设,过点作于点,如图2所示,利用含的直角三角形性质及勾股定理即可得到相关角度与线段长,再由三角形相似的判定与性质得到,代值求解即可得到答案.
【小问1详解】
证明:∵,,
∴,
∴,
∴;
【小问2详解】
解:∵点为中点,
∴设,
由(1)知,
∴,
∴,
∴与的相似比为,
∴,
∵
∴;
【小问3详解】
解:过点作的平行线交的延长线于点,过作,如图1所示:
∵点为中点,
∴设,
∵,
∴,,
在中,,则由勾股定理可得,
过点作于点,如图2所示:
∴,
∴,
∴,
∴,,
∴,
∴,
∵,点为中点,
∴,,,
又∵,
∴,,
∴,
又∵,
∴,,
∴,即,
∴,
∴.
【点睛】本题考查几何综合,涉及相似三角形的判定与性质、含的直角三角形性质、勾股定理等知识,熟练掌握三角形相似的判定与性质是解决问题的关键.
13. (2022四川自贡)如图,用四根木条钉成矩形框,把边固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).
(1)通过观察分析,我们发现图中线段存在等量关系,如线段由旋转得到,所以.我们还可以得到= , = ;
(2)进一步观察,我们还会发现∥,请证明这一结论;
(3)已知,若恰好经过原矩形边的中点 ,求与之间的距离.
【答案】(1)CD,AD; (2)见解析; (3)EF于BC之间的距离为64cm.
【解析】【分析】(1)由推动矩形框时,矩形ABCD的各边的长度没有改变,可求解;
(2)通过证明四边形BEFC是平行四边形,可得结论;
(3)由勾股定理求BH的长,再证明△BCH∽△BGE,得到,代入数值求解EG,即可得到答案.
【小问1详解】
解:∵ 把边固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).
∴由旋转的性质可知矩形ABCD的各边的长度没有改变,
∴AB=BE,EF=AD,CF=CD,
故答案为:CD,AD;
【小问2详解】
解:∵四边形ABCD是矩形,
∴ADBC,AB=CD,AD=BC,
∵AB=BE,EF=AD,CF=CD,
∴BE=CF,EF=BC,
∴四边形BEFC是平行四边形,
∴EFBC,
∴EFAD;
【小问3详解】
解:如图,过点E作EG⊥BC于点G,
∵DC=AB=BE=80cm,点H是CD的中点,
∴ CH=DH=40cm,
在Rt△BHC中,∠BCH=90°,
BH=(cm),
∵ EG⊥BC,
∴∠EGB=∠BCH=90°,
∴CHEG,
∴ △BCH∽△BGE,
∴,
∴,
∴EG=64,
∵ EFBC,
∴EF与BC之间的距离为64cm.
【点睛】此题考查了矩形的性质、平行四边形的判定和性质、勾股定理、相似三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.
14. (2024四川甘孜)如图,在四边形中,,连接,过点作,垂足为,交于点,.
(1)求证:;
(2)若.
①请判断线段,的数量关系,并证明你的结论;
②若,,求的长.
【答案】(1)见解析 (2)①,理由见解析;②
【解析】【分析】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定与性质,相似三角形的判定和性质,勾股定理,直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.
(1)由余角的性质可得,,根据,可得;
(2)①设,可求,可求,根据等腰三角形的判定可得;
②由勾股定理可求,由“”可证,可得,通过证明,可得,即可求解.
【小问1详解】
证明:,
,
,,
,
;
【小问2详解】
解:①,理由如下:
设,
,
,
,
,
,
;
②,,
,
,,,
,
,
,,
,
,
,
.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)