2022-2024四川省各地数学三年真题分类汇编:专题23 轴对称(折叠)、平移、旋转变换(原卷+解析版)

文档属性

名称 2022-2024四川省各地数学三年真题分类汇编:专题23 轴对称(折叠)、平移、旋转变换(原卷+解析版)
格式 zip
文件大小 3.5MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-08-19 15:43:27

文档简介

中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题23 轴对称(折叠)、平移、旋转变换
一、选择题
1. (2024四川眉山)下列交通标志中,属于轴对称图形的是( )
A. B. C. D.
2. (2024四川巴中)下列图形中,是轴对称图形的是( )
A. B. C. D.
3. (2023四川宜宾)下列图案中,既是轴对称图形,又是中心对称图形的是(  )
A. B. C. D.
4. (2022四川达州)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是( )
A. B. C. D.
5. (2024四川内江)2024年6月5日,是二十四节气的芒种,二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是( )
A. B. C. D.
6. (2023四川自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
7. (2023四川内江)下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A. B. C. D.
8. (2024四川凉山)如图,在中,垂直平分交于点,若的周长为,则( )
A. B. C. D.
9. (2024四川泸州)宽与长的比是的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形沿对角线翻折,点落在点处,交于点,则的值为( )
A. B. C. D.
10. (2024四川自贡)如图,在平面直角坐标系中,,将绕点O逆时针旋转到位置,则点B坐标为( )
A. B. C. D.
11. (2023四川宜宾)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:
①;②;
③当点在的延长线上时,;
④在旋转过程中,当线段最短时,的面积为.
其中正确结论有(  )
A. 1个 B. 2个 C. 3个 D. 4个
二、填空题
12. (2023四川成都)如图,已知,点B,E,C,F依次在同一条直线上.若,则的长为___________.
13. (2022四川德阳)如图,直角三角形纸片中,,点是边上的中点,连接,将沿折叠,点落在点处,此时恰好有.若,那么______.
14. (2024四川甘孜)如图,中,,,,折叠,使点A与点B重合,折痕与交于点D,与交于点E,则的长为______.
15. (2023四川成都)如图,在中,,平分交于点,过作交于点,将沿折叠得到,交于点.若,则__________.
16. (2023四川凉山)如图,在纸片中,,是边上的中线,将沿折叠,当点落在点处时,恰好,若,则_________.
三、解答题
17. (2024四川成都市)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
18. (2023四川达州)(1)如图①,在矩形的边上取一点,将沿翻折,使点落在上处,若,求的值;
(2)如图②,在矩形的边上取一点,将四边形沿翻折,使点落在的延长线上处,若,求的值;
(3)如图③,在中,,垂足为点,过点作交于点,连接,且满足,直接写出的值.
19. (2023四川达州)如图,网格中每个小正方形的边长均为1,的顶点均在小正方形的格点上.
(1)将向下平移3个单位长度得到,画出;
(2)将绕点顺时针旋转90度得到,画出;
(3)在(2)的运动过程中请计算出扫过的面积.
20. (2023四川广安)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).
21. (2023四川自贡)如图1,一大一小两个等腰直角三角形叠放在一起,,分别是斜边,的中点,.
(1)将绕顶点旋转一周,请直接写出点,距离的最大值和最小值;
(2)将绕顶点逆时针旋转(如图),求的长.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题23 轴对称(折叠)、平移、旋转变换
一、选择题
1. (2024四川眉山)下列交通标志中,属于轴对称图形的是( )
A. B. C. D.
【答案】A
【解析】本题主要考查了轴对称图形,根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.
【详解】A.是轴对称图形,故此选项符合题意;
B.不是轴对称图形,故此选项不符合题意;
C. 不是轴对称图形,故此选项不符合题意;
D. 不是轴对称图形,故此选项不符合题意;
故选:A.
2. (2024四川巴中)下列图形中,是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】本题考查了轴对称图形的识别.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
A,B,C选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,
D选项中图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.
故选:D.
3. (2023四川宜宾)下列图案中,既是轴对称图形,又是中心对称图形的是(  )
A. B. C. D.
【答案】D
【解析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.
A.是轴对称图形但不是中心对称图形,故A选项不符合题意;
B.是中心对称图形但不是轴对称图形,故B选项不合题意;
C.既不是轴对称图形,也不是中心对称图形,故C选项不合题意;
D.既是轴对称图形,又是中心对称图形,故D选项符合题意.
故选D.
【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.
4. (2022四川达州)在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的是( )
A. B. C. D.
【答案】A
【解析】根据轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐个分析即可求解.
A.是轴对称图形,故该选项符合题意;
B.不是轴对称图形,故该选项不符合题意;
C.不是轴对称图形,故该选项不符合题意;
D.不是轴对称图形,故该选项不符合题意;
故选A
【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟练掌握轴对称图形的定义.
5. (2024四川内江)2024年6月5日,是二十四节气的芒种,二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是( )
A. B. C. D.
【答案】D
【解析】根据中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.本题主要考查了中心对称图形,解题的关键在于能够熟练掌握中心对称图形的定义.
【详解】解:A.不是中心对称图形,故A选项不合题意;
B.不是中心对称图形,故B选项不合题意;
C.不是中心对称图形,故C选项不合题意;
D.是中心对称图形,故D选项合题意;
故选:D.
6. (2023四川自贡)下列交通标志图案中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D. 【答案】B
【解析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.
A.是轴对称图形,不是中心对称图形,故A选项不合题意;
B.既是轴对称图形又是中心对称图形,故B选项符合题意;
C.既不是轴对称图形,也不是中心对称图形,故C选项不合题意;
D.是轴对称图形,不是中心对称图形,故D选项不合题意.
故选:B.
【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.
7. (2023四川内江)下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A. B. C. D.
【答案】A
【解析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
A、既是轴对称图形,又是中心对称图形,符合题意;
B、既不是轴对称图形,也不是中心对称图形,不符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、不是轴对称图形,是中心对称图形,不符合题意,
故选:A.
【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转后与原图重合是关键.
8. (2024四川凉山)如图,在中,垂直平分交于点,若的周长为,则( )
A. B. C. D.
【答案】C
【解析】本题考查了线段垂直平分线的的性质,由线段垂直平分线的的性质可得,进而可得的周长,即可求解,掌握线段垂直平分线的的性质是解题的关键.
【详解】解:∵垂直平分,
∴,
∴的周长,
故选:.
9. (2024四川泸州)宽与长的比是的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形沿对角线翻折,点落在点处,交于点,则的值为( )
A. B. C. D.
【答案】A
【解析】本题考查了折叠的性质,矩形的性质,勾股定理,全等三角形的判定和性质,三角函数等知识点,利用黄金比例表示各线段的长是解题的关键.
设宽,根据比例表示长,证明,在中,利用勾股定理即可求得结果.
【详解】解:设宽为,
∵宽与长的比是,
∴长为:,
由折叠的性质可知,,
在和中,

∴,
∴,
∴,
设,
在中,,
变形得:,
,,
∴,
故选A.
10. (2024四川自贡)如图,在平面直角坐标系中,,将绕点O逆时针旋转到位置,则点B坐标为( )
A. B. C. D.
【答案】A
【解析】本题考查坐标与图形,三角形全等的判定和性质.由旋转的性质得到,推出,即可求解.
【详解】∵,
∴,,
∵将绕点O逆时针旋转到,
∴,
∴,,
∴点B坐标,
故选:A.
11. (2023四川宜宾)如图,和是以点为直角顶点的等腰直角三角形,把以为中心顺时针旋转,点为射线、的交点.若,.以下结论:
①;②;
③当点在的延长线上时,;
④在旋转过程中,当线段最短时,的面积为.
其中正确结论有(  )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】D
【解析】证明即可判断①,根据三角形的外角的性质得出②,证明得出,即可判断③;以为圆心,为半径画圆,当在的下方与相切时,的值最小,可得四边形是正方形,在中,然后根据三角形的面积公式即可判断④.
【详解】∵和是以点为直角顶点的等腰直角三角形,
∴,
∴,
∴,
∴,,故①正确;
设,
∴,
∴,
∴,故②正确;
当点在的延长线上时,如图所示
∵,,


∵,.
∴,

∴,故③正确;
④如图所示,以为圆心,为半径画圆,
∵,
∴当在的下方与相切时,的值最小,
∴四边形是矩形,
又,
∴四边形是正方形,
∴,
∵,
∴,
在中,
∴取得最小值时,

故④正确,
故选:D.
【点睛】本题考查了旋转的性质,相似三角形的性质,勾股定理,切线的性质,垂线段最短,全等三角形的性质与判定,正方形的性质,熟练掌握以上知识是解题的关键.
二、填空题
12. (2023四川成都)如图,已知,点B,E,C,F依次在同一条直线上.若,则的长为___________.
【答案】3
【解析】利用平移性质求解即可.
由平移性质得:,
∴,
故答案为:3.
【点睛】本题考查平移性质,熟练掌握平移性质是解答的关键.
13. (2022四川德阳)如图,直角三角形纸片中,,点是边上的中点,连接,将沿折叠,点落在点处,此时恰好有.若,那么______.
【答案】
【解析】根据D为AB中点,得到AD=CD=BD,即有∠A=∠DCA,根据翻折的性质有∠DCA=∠DCE,CE=AC,再根据CE⊥AB,求得∠A=∠BCE,即有∠BCE=∠ECD=∠DCA=30°,则有∠A=30°,在Rt△ACB中,即可求出AC,则问题得解.
∵∠ACB=90°,
∴∠A+∠B=90°,
∵D为AB中点,
∴在直角三角形中有AD=CD=BD,
∴∠A=∠DCA,
根据翻折的性质有∠DCA=∠DCE,CE=AC,
∵CE⊥AB,
∴∠B+∠BCE=90°,
∵∠A+∠B=90°,
∴∠A=∠BCE,
∴∠BCE=∠ECD=∠DCA,
∵∠BCE+∠ECD+∠DCA=∠ACB=90°,
∴∠BCE=∠ECD=∠DCA=30°
∴∠A=30°,
∴在Rt△ACB中,BC=1,
则有,
∴,
故答案为:.
【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE=∠ECD=∠DCA=30°是解答本题的关键.
14. (2024四川甘孜)如图,中,,,,折叠,使点A与点B重合,折痕与交于点D,与交于点E,则的长为______.
【答案】3
【解析】本题考查了折叠的性质和勾股定理,熟练掌握勾股定理是解题的关键.
设,则,根据勾股定理求解即可.
由折叠的性质,得,
设,则,
由勾股定理,得,
∴,
解得.
故答案为:3.
15. (2023四川成都)如图,在中,,平分交于点,过作交于点,将沿折叠得到,交于点.若,则__________.
【答案】
【解析】【分析】过点作于,证明,得出,根据,得,设,,则,则,在中,,在中,,则,解方程求得,则,,勾股定理求得,根据正切的定义,即可求解.
【详解】如图所示,过点作于,
∵平分交于点,
∴,


∵折叠,
∴,
∴,
又∵



∵,,则,

∴,,

设,,则,则,


在中,
在中,


解得:
∴,


故答案为:.
【点睛】本题考查了求正切,折叠的性质,勾股定理,平行线分线段成比例,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.
16. (2023四川凉山)如图,在纸片中,,是边上的中线,将沿折叠,当点落在点处时,恰好,若,则_________.
【答案】
【解析】由,,是边上的中线,可知,则,由翻折的性质可知,,,则,如图,记与的交点为,,由,可得,根据,计算求解即可.
【详解】∵,,是边上的中线,
∴,
∴,
由翻折的性质可知,,,
∴,
如图,记与的交点为,
∵,
∴,
∵,
∴,
∴,
故答案为:.
【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,翻折的性质,等边对等角,三角形内角和定理,正切.解题的关键在于对知识的熟练掌握与灵活运用.
三、解答题
17. (2024四川成都市)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
【答案】(1)的值为;(2);(3)直角三角形的面积分别为4,16,12,
【解析】【分析】(1)根据,,.证明,,继而得到,即,再证明,得到.
(2)连接,延长交于点Q,根据(1)得,得到,根据中线得到,继而得到,结合,得到即,得到,再证明,得证矩形,再利用勾股定理,三角形相似的判定和性质计算即可.
(3)运用分类思想解答即可.
【详解】(1)∵,,.
∴,
∴,,
∴即,

∴,
∴.
(2)连接,延长交于点Q,根据(1)得,
∴,
∵是中线
∴,
∴,
∵,
∴即,
∴,
∴,
∵,
∴,
∴,
∴四边形是平行四边形,

∴四边形矩形,
∴,
∴,
∴,
∴,
设,则,
∵,
∴,
∴,
∵,
∴,
解得;
∴,,
∵,
∴,
∴,
∴,
∴,
解得.
(3)如图,当与重合时,此时,此时是直角三角形,
故;
如图,当在的延长线上时,此时,此时是直角三角形,
故;
如图,当时,此时直角三角形,
过点A作于点Q,
∵,
∴,
∵,,,
∴四边形矩形,
∴,
∴,
故;
如图,当时,此时是直角三角形,
过点A作于点Q,交于点N,
∴,,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
解得;
故.
【点睛】本题考查了旋转的性质,三角形相似的判定和性质,三角形中位线定理的判定和应用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.
18. (2023四川达州)(1)如图①,在矩形的边上取一点,将沿翻折,使点落在上处,若,求的值;
(2)如图②,在矩形的边上取一点,将四边形沿翻折,使点落在的延长线上处,若,求的值;
(3)如图③,在中,,垂足为点,过点作交于点,连接,且满足,直接写出的值.
【答案】(1);(2)5;(3)
【解析】【分析】(1)由矩形性质和翻折性质、结合勾股定理求得,设则,中利用勾股定理求得,则,,进而求解即可;
(2)由矩形的性质和翻折性质得到,证明,利用相似三角形的性质求得,则,在中,利用勾股定理求得,
进而求得,可求解;
(3)证明得到,则;设,,过点D作于H,证明得到,中,由勾股定理解得,进而可求得,在图③中,过B作于G,证明,则,,再证明,在中利用锐角三角函数和求得即可求解.
【详解】解:(1)如图①,∵四边形是矩形,
∴,,,
由翻折性质得,,
在中,,
∴,
设,则,
在中,由勾股定理得,
∴,解得,
∴,,
∴;
(2)如图②,∵四边形是矩形,
∴,,,
由翻折性质得,,,,

∴,
∴,
∴,即,又,
∴,
∴,
在中,,
∴,则,
∴;
(3)∵,,
∴,
∴,
∵,
∴,
∴,则;
设,,
过点D作于H,如图③,则,
∴;
∵,
∴,
∴,
又∵,,
∴,
∴,
在中,由勾股定理得,
∴,解得,
∴,,
在中,,
在图③中,过B作于G,则,
∴,
∴,
∴,,
∵,,
∴,则,
在中, ,,
∵,
∴,则,
∴.
【点睛】本题考查矩形的性质、翻折性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、锐角三角函数等知识,综合性强,较难,属于中考压轴题,熟练掌握相关知识的联系与运用,添加辅助线求解是解答的关键.
19. (2023四川达州)如图,网格中每个小正方形的边长均为1,的顶点均在小正方形的格点上.
(1)将向下平移3个单位长度得到,画出;
(2)将绕点顺时针旋转90度得到,画出;
(3)在(2)的运动过程中请计算出扫过的面积.
【答案】(1)见解析 (2)见解析 (3)
【解析】(1)先作出点A、B、C平移后的对应点,、,然后顺次连接即可;
(2)先作出点A、B绕点顺时针旋转90度的对应点,,然后顺次连接即可;
(3)证明为等腰直角三角形,求出,,根据旋转过程中扫过的面积等于的面积加扇形的面积即可得出答案.
【详解】(1)作出点A、B、C平移后的对应点,、,顺次连接,则即为所求,如图所示:
(2)作出点A、B绕点顺时针旋转90度的对应点,,顺次连接,则即为所求,如图所示:
(3)∵,,,
∴,
∵,
∴,
∴为等腰直角三角形,
∴,
根据旋转可知,,
∴,
∴在旋转过程中扫过的面积为.
【点睛】本题主要考查了平移、旋转作图,勾股定理逆定理,扇形面积计算,解题关键是作出平移或旋转后的对应点.
20. (2023四川广安)将边长为2的正方形剪成四个全等的直角三角形,用这四个直角三角形拼成符合要求的四边形,请在下列网格中画出你拼成的四边形(注:①网格中每个小正方形的边长为1;②所拼的图形不得与原图形相同;③四边形的各顶点都在格点上).
【答案】见解析(答案不唯一,符合题意即可)
【解析】根据轴对称图形和中心对称图形的性质进行作图即可.
①要求是轴对称图形但不是中心对称图形,则可作等腰梯形,如图四边形即为所求;
②要求是中心对称图形但不是轴对称图形,则可作一般平行四边形,如图四边形即为所求;
③要求既是轴对称图形又是中心对称图形,则可作菱形、矩形等,如图四边形即为所求;
④要求既不是轴对称图形又不是中心对称图形,则考虑作任意四边形,如图四边形即为所求.
【点睛】本题考查轴对称图形和中心对称图形的概念及作图,轴对称图形:把一个图形沿着某条直线折叠,能够与另一个图形重合;中心对称图形:把一个图形绕着某个点旋转能够和原图形重合.
21. (2023四川自贡)如图1,一大一小两个等腰直角三角形叠放在一起,,分别是斜边,的中点,.
(1)将绕顶点旋转一周,请直接写出点,距离的最大值和最小值;
(2)将绕顶点逆时针旋转(如图),求的长.
【答案】(1)最大值为,最小值为 (2)
【解析】(1)根据直角三角形斜边上的中线,得出的值,进而根据题意求得最大值与最小值即可求解;
(2)过点作,交的延长线于点,根据旋转的性质求得,进而得出,进而可得,勾股定理解,即可求解.
【详解】(1)依题意,,,
当在的延长线上时,的距离最大,最大值为,
当在线段上时,的距离最小,最小值为;
(2)如图所示,过点作,交的延长线于点,
∵绕顶点逆时针旋转,
∴,
∵,
∴,
∴,
∴,
∴,
在中,,
在中,,
∴.
【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录