2022-2024四川省各地数学三年真题分类汇编:专题28 概率(原卷+解析版)

文档属性

名称 2022-2024四川省各地数学三年真题分类汇编:专题28 概率(原卷+解析版)
格式 zip
文件大小 2.7MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-08-19 15:42:35

文档简介

中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题28 概率
一、选择题
1. (2024四川内江)下列事件是必然事件的是( )
A. 打开电视机,中央台正在播放“嫦娥六号完成人类首次背月采样”的新闻
B 从两个班级中任选三名学生担任学校安全督查员,至少有两名学生来自同一个班级
C. 小明在内江平台一定能抢到龙舟节开幕式门票
D. 从《西游记》《红楼梦》《三国演义》《水浒传》这四本书中随机抽取一本是《三国演义》
2. (2023四川自贡)下列说法正确的是( )
A. 甲 乙两人10次测试成绩的方差分别是,则乙的成绩更稳定
B. 某奖券的中奖率为,买100张奖券,一定会中奖1次
C. 要了解神舟飞船零件质量情况,适合采用抽样调查
D. 是不等式的解,这是一个必然事件
3. (2023四川成都)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是( )
A. B. C. D.
4. (2023四川泸州)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为(  )
A. B. C. D.
5. (2023四川遂宁)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为,大圆半径为,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是( )
A. B. C. D.
6. (2022四川乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是( )
A. B. C. D.
二、填空题
7. (2024四川达州)“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.
8. (2024四川泸州)在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为______.
9. (2024四川成都市)盒中有枚黑棋和枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为______.
10. (2023四川南充)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为,若袋中有4个白球,则袋中红球有________个.
11. (2023四川自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是________.
12. (2022四川广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是________.
13. (2022四川自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是______鱼池(填甲或乙)
14. (2024四川资阳)一个不透明的袋中装有个白球和个红球,这些球除颜色外无其他差别.充分搅匀后,从袋中随机取出一个球是白球的概率为,则________.
15. (2022四川成都)如图,已知⊙是小正方形外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.
三、解答题
16. (2024四川达州)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:
等级
分数段
频数 m
请根据表中提供的信息.解答下列问题:
(1)此次调查共抽取了______名选手,______,______;
(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;
(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.
17. (2024四川眉山)为响应国家政策,保障耕地面积,提高粮食产量,确保粮食安全,我市开展高标准农田改造建设,调查统计了其中四台不同型号挖掘机(分别为型,型,型,型)一个月内改造建设高标准农田的面积(亩),并绘制成如图不完整的统计图表:
改造农田面积统计表
型号
亩数 16 20 12
利用图中的信息,解决下列问题:
(1)①______;
②扇形统计图中的度数为______.
(2)若这四台不同型号的挖掘机共改造建设了960亩高标准农田,估计其中型挖掘机改造建设了多少亩?
(3)若从这四台不同型号的挖掘机中随机抽调两台挖掘机参加其它任务,请用画树状图或列表的方法求出恰好同时抽到,两种型号挖掘机的概率.
18. (2023四川达州)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.
(1)该班共有学生_________人,并把条形统计图补充完整;
(2)扇形统计图中,___________,___________,参加剪纸社团对应的扇形圆心角为_______度;
(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
19. (2023四川广安)“双减”政策实施后,某校为丰富学生的课余生活,开设了A书法,B绘画,C舞蹈,D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.
(1)本次抽取调查学生共有___人,估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为____人.
(2)请将以上两个统计图补充完整.
(3)甲、乙两名学生要选择参加兴趣班,若他们每人从A,B,C,D四类兴趣班中随机选取一类,请用画树状图或列表法,求两人恰好选择同一类的概率.
20. (2023四川广元)为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:
(1)求第四小组的频数,并补全频数分布直方图;
(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;
(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.
21. (2023四川乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表,如图所示.
家务类型 洗衣 拖地 煮饭 刷碗
人数(人) 10 12 10 m
根据上面图表信息,回答下列问题:
(1)__________;
(2)在扇形统计图中,“拖地”所占的圆心角度数为__________;
(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.
22.(2023四川凉山) (2023四川凉山)2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海沪山风景区(以下分别用表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的游客有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若某游客随机选择四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择的概率.
23. (2023四川眉山)某校为落实“双减”工作,推行“五育并举”,计划成立五个兴趣活动小组(每个学生只能参加一个活动小组):A.音乐,B.美术,C.体育,D.阅读,E.人工智能,为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图:
根据图中信息,完成下列问题:
(1)①补全条形统计图(要求在条形图上方注明人数);
②扇形统计图中的圆心角的度数为____________.
(2)若该校有3600名学生,估计该校参加E组(人工智能)学生人数;
(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四位同学中随机抽取两人参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.
24. (2023四川南充)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).
(1)已知该班有15人参加A类活动,则参加C类活动有多少人?
(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.
25. (2023四川宜宾)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:
类别 劳动时间
A
B
C
D
E
(1)九年级1班学生共有___________人,补全条形统计图;
(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
(3)已知E类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.
26. (2023四川遂宁)为贯彻落实党的二十大关于深化全民阅读活动的重要部署,教育部印发了《全国青少年学生读书行动实施方案》,于是某中学开展了以“书香润校园,好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况,采用随机抽样的方式获取了若干名学生的周末阅读时间数据,整理后得到下列不完整的图表:
类别 A类 B类 C类 D类
阅读时长t(小时)
频数 8 m n 4
请根据图表中提供的信息,解答下面的问题:
(1)此次调查共抽取了_________名学生, _________, _________;
(2)扇形统计图中,B类所对应的扇形的圆心角是_________度;
(3)已知在D类的4名学生中有两名男生和两名女生,若从中随机抽取两人参加阅读分享活动,请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.
27.(2023四川内江) 某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)此次调查一共随机抽取了___________名学生,补全条形统计图(要求在条形图上方注明人数);
(2)扇形统计图中圆心角___________度;
(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.
28. (2022四川成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.
等级 时长:(单位:分钟) 人数 所占百分比
4
20
根据图表信息,解答下列问题:
(1)本次调查的学生总人数为_________,表中的值为_________;
(2)该校共有500名学生,请你估计等级为的学生人数;
(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题28 概率
一、选择题
1. (2024四川内江)下列事件是必然事件的是( )
A. 打开电视机,中央台正在播放“嫦娥六号完成人类首次背月采样”的新闻
B 从两个班级中任选三名学生担任学校安全督查员,至少有两名学生来自同一个班级
C. 小明在内江平台一定能抢到龙舟节开幕式门票
D. 从《西游记》《红楼梦》《三国演义》《水浒传》这四本书中随机抽取一本是《三国演义》
【答案】B
【解析】本题考查了事件的分类,熟记必然事件、不可能事件、随机事件的概念是解题关键.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据定义,对每个选项逐一判断.
【详解】A、是随机事件,不符合题意,选项错误;
B、是必然事件,符合题意,选项正确;
C、是随机事件,不符合题意,选项错误;
D、是随机事件,不符合题意,选项错误;
故选:B.
2. (2023四川自贡)下列说法正确的是( )
A. 甲 乙两人10次测试成绩的方差分别是,则乙的成绩更稳定
B. 某奖券的中奖率为,买100张奖券,一定会中奖1次
C. 要了解神舟飞船零件质量情况,适合采用抽样调查
D. 是不等式的解,这是一个必然事件
【答案】D
【解析】根据方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义逐项分析判断
A. 甲 乙两人10次测试成绩的方差分别是,则甲的成绩更稳定,故该选项不正确,不符合题意;
B. 某奖券的中奖率为,买100张奖券,可能会中奖1次,故该选项不正确,不符合题意;
C. 要了解神舟飞船零件质量情况,适合采用全面调查
D.解:,

解得:,
∴是不等式的解,这是一个必然事件,故该选项正确,符合题意;
故选:D.
【点睛】本题考查了方差的意义,概率的意义,抽样调查与普查,不等式的解与必然事件的定义,熟练掌握以上知识是解题的关键.
3. (2023四川成都)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是( )
A. B. C. D.
【答案】B
【解析】根据概率公式求解即可.
由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,
∴小明随机抽取一张,他恰好抽中水果类卡片的概率是,
故选:B.
【点睛】本题考查求简单事件的概率,关键是熟知求概率公式:所求情况数与总情况数之比.
4. (2023四川泸州)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为(  )
A. B. C. D.
【答案】B
【解析】由众数的概念可知六个数中众数为5,然后根据简单概率计算公式求解即可.
【详解】1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,
故这组数据的众数为5,
所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为.
故选:B.
【点睛】本题主要考查了求一组数据的众数以及简单概率计算,正确确定该组数据的众数是解题关键.
5. (2023四川遂宁)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为,大圆半径为,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是( )
A. B. C. D.
【答案】B
【解析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率免一次作业对应区域的面积大圆面积进行求解即可.
【详解】解:由题意得,大圆面积为,
免一次作业对应区域的面积为,
∴投中“免一次作业”的概率是,
故选B.
【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.
6. (2022四川乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是( )
A. B. C. D.
【答案】A
【解析】由于每个球被取出的机会是均等的,故用概率公式计算即可.
根据题意,一个布袋中放着6个黑球和18个红球,根据概率计算公式,
从布袋中任取1个球,取出黑球的概率是.
【点睛】本题主要考查了概率公式的知识,解题关键是熟记概率公式.
二、填空题
7. (2024四川达州)“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.
【答案】
【解析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.
【详解】把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A,B,C,D,根据题意,画出如下的树状图:
由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.
两本是《三国演义》和《西游记》的结果有2种,
所以P(两本是《三国演义》和《西游记》).
故答案为:.
8. (2024四川泸州)在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为______.
【答案】3
【解析】此题考查了分式方程的应用,以及概率公式的应用.设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案.
【详解】设黄球的个数为x个,
根据题意得:,
解得:,
经检验,是原分式方程的解,
∴黄球的个数为3个.
故答案为:3.
9. (2024四川成都市)盒中有枚黑棋和枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为______.
【答案】
【解析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是,可得,进而利用比例性质求解即可.
∵随机取出一枚棋子,它是黑棋的概率是,
∴,则,
故答案为:.
10. (2023四川南充)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为,若袋中有4个白球,则袋中红球有________个.
【答案】6
【解析】设袋中红球有x个,然后根据概率计算公式列出方程求解即可.
设袋中红球有x个,
由题意得:,
解得,
检验,当时,,
∴是原方程的解,
∴袋中红球有6个,
故答案为:6.
【点睛】本题主要考查了已知概率求数量,熟知红球的概率红球数量球的总数是解题的关键.
11. (2023四川自贡)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是________.
【答案】##0.4
【解析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.
【详解】设蛋黄粽为A,鲜肉粽为B,画树状图如下:
共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,
∴爷爷奶奶吃到同类粽子的概率是,
故答案为:.
【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.
12. (2022四川广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m与n的关系是________.
【答案】m+n=10.
【解析】直接利用概率相同的频数相同进而得出答案.
∵一个袋中装有m个红球,10个黄球,n个白球,摸到黄球的概率与不是黄球的概率相同,
∴m与n关系是:m+n=10.
故答案为m+n=10.
【点睛】此题主要考查了概率公式,正确理解概率求法是解题关键.
13. (2022四川自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是______鱼池(填甲或乙)
【答案】甲
【解析】先计算出有记号鱼的频率,再用频率估计概率,利用概率计算鱼的总数,比较两个鱼池中的总数即可得到结论.
设甲鱼池鱼的总数为x条,则
鱼的概率近似,解得x=2000;
设乙鱼池鱼的总数为y条,则
鱼的概率近似,解得y=1000;

可以初步估计鱼苗数目较多的是甲鱼池,
故答案为:甲.
【点睛】本题主要考查了频率=所求情况数与总情况数之比,关键是根据有记号的鱼的频率得到相应的等量关系.
14. (2024四川资阳)一个不透明的袋中装有个白球和个红球,这些球除颜色外无其他差别.充分搅匀后,从袋中随机取出一个球是白球的概率为,则________.
【答案】
【解析】本题主要考查了概率公式,用到的知识点为:概率所求情况数与总情况数之比.根据概率公式即可求解.
从袋中随机取出一个球是白球的概率为,

解得:,
故答案为:.
15. (2022四川成都)如图,已知⊙是小正方形外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是_________.
【答案】
【解析】如图,设OA=a,则OB=OC=a,根据正方形内接圆和外接圆的关系,求出大正方形、小正方形和圆的面积,再根据概率公式计算即可.
【详解】如图,设OA=a,则OB=OC=a,
由正方形的性质可知∠AOB=90°,

由正方形的性质可得CD=CE=OC=a,
∴DE=2a,
S阴影=S圆-S小正方形=,
S大正方形=,
∴这个点取在阴影部分的概率是,
故答案为:
【点睛】本题考查了概率公式、正方形的性质、正方形外接圆和内切圆的特点、圆的面积计算,根据题意弄清楚图形之间的关系是解题的关键.
三、解答题
16. (2024四川达州)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:
等级
分数段
频数 m
请根据表中提供的信息.解答下列问题:
(1)此次调查共抽取了______名选手,______,______;
(2)扇形统计图中,等级所对应的扇形圆心角度数是______度;
(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.
【答案】(1),, (2) (3)
【解析】本题考查了列表法求概率,频数分布表以及扇形统计图;
(1)根据等级的人数除以占比得出总人数,进而求得的值;
(2)根据等级的占比乘以,即可求解;
(3)设三个项目的冠军分别为,根据列表法求概率,即可求解.
【小问1详解】
解:依题意,名选手,,

故答案为:,,.
【小问2详解】
扇形统计图中,等级所对应的扇形圆心角度数是,
故答案为:.
【小问3详解】
解:设三个项目的冠军分别为,列表如下,
共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,
∴恰好抽到马拉松和欢乐跑冠军的概率为
17. (2024四川眉山)为响应国家政策,保障耕地面积,提高粮食产量,确保粮食安全,我市开展高标准农田改造建设,调查统计了其中四台不同型号挖掘机(分别为型,型,型,型)一个月内改造建设高标准农田的面积(亩),并绘制成如图不完整的统计图表:
改造农田面积统计表
型号
亩数 16 20 12
利用图中的信息,解决下列问题:
(1)①______;
②扇形统计图中的度数为______.
(2)若这四台不同型号的挖掘机共改造建设了960亩高标准农田,估计其中型挖掘机改造建设了多少亩?
(3)若从这四台不同型号的挖掘机中随机抽调两台挖掘机参加其它任务,请用画树状图或列表的方法求出恰好同时抽到,两种型号挖掘机的概率.
【答案】(1)①32,② (2)240亩 (3)
【解析】本题考查的是统计表和扇形统计图的综合运用,求扇形统计图圆心角度数,用样本估计总体,画树状图求概率.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
(1)利用型建设高标准农田面积除以其所占比得到总数,再利用总数减去型,型,型的面积,即可得到型的建设面积, 利用乘以型建设面积所占比,即可解题;
(2)利用总数乘以型所占比,即可解题;
(3)根据题意画出树状图得到总的情况数,再得到抽到,两种型号挖掘机的情况数,利用概率公式求解即可.
【小问1详解】
解:①(亩),

②扇形统计图中的度数为;
故答案为:32,;
【小问2详解】
解:根据题意得:(亩),
答:估计其中型挖掘机改造建设了240亩;
【小问3详解】
解:画树状图得:
共有12种等可能的结果,同时抽到,两种型号挖掘机的有2种情况,
同时抽到,两种型号挖掘机的概率为:.
18. (2023四川达州)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.
(1)该班共有学生_________人,并把条形统计图补充完整;
(2)扇形统计图中,___________,___________,参加剪纸社团对应的扇形圆心角为_______度;
(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
【答案】(1),详见图示; (2),,; (3);
【解析】(1)利用C类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D的人数,然后补图即可;
(2)根据总数与各项人数比值可求出m,n的值,A项目的人数与总人数比值乘即可得出圆心角的度数;
(3)画树状图展示所有20种等可能的结果数,再找出恰好选中小鹏和小兵的结果数,然后利用概率公式求解.
【详解】(1)本次调查的学生总数:(人),
D、书法社团的人数为:(人),如图所示
故答案为:50;
(2)由图知,,
∴,参加剪纸的圆心角度数为
故答案为:20,10,
(3)用表示社团的五个人,其中A,B分别代表小鹏和小兵树状图如下:
共20种等可能情况,有2种情恰好是小鹏和小兵参加比赛,
故恰好选中小鹏和小兵的概率为.
【点睛】本题考查条形统计图和扇形统计图的综合运用,列表法与画树状图法求概率,解题的关键是掌握列表法与画树状图法求概率的方法:先利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
19. (2023四川广安)“双减”政策实施后,某校为丰富学生的课余生活,开设了A书法,B绘画,C舞蹈,D跆拳道四类兴趣班.为了解学生对这四类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.
(1)本次抽取调查学生共有___人,估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为____人.
(2)请将以上两个统计图补充完整.
(3)甲、乙两名学生要选择参加兴趣班,若他们每人从A,B,C,D四类兴趣班中随机选取一类,请用画树状图或列表法,求两人恰好选择同一类的概率.
【答案】(1)60,300 (2)见解析 (3)
【解析】【分析】(1)根据喜欢绘画的条形统计图和扇形统计图信息即可得本次抽取调查学生的总人数,再利用3000乘以喜欢跆拳道的学生所占百分比即可得;
(2)先求出喜欢书法的学生人数,据此补全条形统计图,再求出喜欢舞蹈和跆拳道的学生所占百分比,据此补全扇形统计图即可得;
(3)先画出树状图,从而可得甲、乙两名学生选择参加兴趣班的所有等可能的结果,再找出两人恰好选择同一类的结果,然后利用概率公式计算即可得.
【小问1详解】
解:本次抽取调查学生总人数为(人),
估计该校3000名学生喜爱“跆拳道”兴趣班的人数约为(人),
故答案为:60,300.
【小问2详解】
解:喜欢书法的学生人数人(人),
喜欢舞蹈的学生所占百分比为,
喜欢跆拳道的学生所占百分比为.
则补全两个统计图如下:
【小问3详解】
解:由题意,画树状图如下:
由图可知,甲、乙两名学生选择参加兴趣班的所有等可能的结果共有16种,其中,两人恰好选择同一类的结果有4种,
则两人恰好选择同一类概率为,
答:两人恰好选择同一类的概率为.
【点睛】本题考查了条形统计图和扇形统计图的信息关联、画条形统计图和扇形统计图、利用列举法求概率,熟练掌握统计调查的相关知识和列举法是解题关键.
20. (2023四川广元)为进一步落实“德、智、体、美、劳”五育并举工作,某校开展以“文化、科技、体育、艺术、劳动”为主题的活动,其中体育活动有“一分钟跳绳”比赛项目,为了解学生“一分钟跳绳”的能力,体育老师随机抽取部分学生进行测试并将测试成绩作为样本,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:
(1)求第四小组的频数,并补全频数分布直方图;
(2)若“一分钟跳绳”不低于160次的成绩为优秀,本校学生共有1260人,请估计该校学生“一分钟跳绳”成绩为优秀的人数;
(3)若“一分钟跳绳”不低于180次的成绩为满分,经测试某班恰有3名男生1名女生成绩为满分,现要从这4人中随机抽取2人去参加学校组织的“一分钟跳绳”比赛,请用画树状图或列表的方法,求所选2人都是男生的概率.
【答案】(1)第四小组的频数为10,补全图形见解析
(2)该校学生“一分钟跳绳”成绩为优秀的人数为294人
(3)所选2人都是男生的概率为.
【解析】【分析】(1)首先利用第二小组的人数及所占比例求得总人数,然后求得第四组的人数,即可作出统计图;
(2)利用总人数1260乘以优秀成绩所占的比例即可求解;
(3)画树状图展示所有12种等可能的结果数,再找出符合条件的结果数,然后根据概率公式计算即可.
【详解】
(1)解:样本容量是(人),
第四组的人数是:(人),
补全统计图如图:

(2)该校学生“一分钟跳绳”成绩为优秀的人数为(人);
(3)画树状图:
共有12种等可能的结果数,其中抽到的2人都是男生的结果数为6,
所以抽到的2人都是男生的概率为.
【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.还考查读频数分布直方图的能力和利用统计图获取信息的能力.
21. (2023四川乐山)为培养同学们爱劳动的习惯,某班开展了“做好一件家务”主题活动,要求全班同学人人参与经统计,同学们做的家务类型为“洗衣”“拖地”“煮饭”“刷碗”.班主任将以上信息绘制成了统计图表,如图所示.
家务类型 洗衣 拖地 煮饭 刷碗
人数(人) 10 12 10 m
根据上面图表信息,回答下列问题:
(1)__________;
(2)在扇形统计图中,“拖地”所占的圆心角度数为__________;
(3)班会课上,班主任评选出了近期做家务表现优异的4名同学,其中有2名男生.现准备从表现优异的同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.
【答案】(1)8 (2) (3)
【解析】【分析】(1)用做饭的人数除以做饭点的百分比,得抽取的总人数,再减去“洗衣”、“拖地”、 “刷碗”的人数即可求得到m值;
(2)用乘以“拖地”人数所占的百分比,即可求解;
(3)画树状图或列表分析出所有可能的结果数和有男生的结果 数,再用概率公式计算即可.
【小问1详解】
解:,
故答案为:8;
【小问2详解】
解:,
故答案为:108°;
【小问3详解】
解:方法一:画树状图如下:
由图可知所有可能的结果共的12种,有男生的结果 有10种,所以所选同学中有男生的概率为.
方法二:列表如下:
男1 男2 女1 女2
男1 (男1,男2) (男1,女1) (男1,女2)
男2 (男2,男1) (男2,女1) (男2,女2)
女1 (女1,男1) (女1,男2) (女1,女2)
女2 (女2,男1) (女2,女1)
由表可知所有可能的结果共的12种,有男生的结果 有10种,所以所选同学中有男生的概率为.
【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.
22.(2023四川凉山) (2023四川凉山)2023年“五一”期间,凉山旅游景点,人头攒动,热闹非凡,州文广旅局对本次“五一”假期选择泸沽湖、会理古城、螺髻九十九里、邛海沪山风景区(以下分别用表示)的游客人数进行了抽样调查,并将调查情况绘制成如下不完整的两幅统计图.
请根据以上信息回答:
(1)本次参加抽样调查的游客有多少人?
(2)将两幅不完整的统计图补充完整;
(3)若某游客随机选择四个景区中的两个,用列表或画树状图的方法,求他第一个景区恰好选择的概率.
【答案】(1)600人 (2)见解析 (3)
【解析】(1)用选择B景区的人数除以其人数占比即可求出参与调查的游客人数;
(2)先求出选则C景区的人数和选择A景区的人数占比,再求出选择C景区的人数占比,最后补全统计图即可;
(3)先画出树状图得到所有等可能性的结果数,然后找到他第一个景区恰好选择的结果数,最后依据概率计算公式求解即可.
【详解】(1)人,
∴本次参加抽样调查的游客有600人;
(2)由题意得,选择C景区的人数为人,选择A景区的人数占比为,
∴选择C景区的人数占比为
补全统计图如下:
(3)画树状图如下:
由树状图可知,一共有12种等可能性的结果数,其中他第一个景区恰好选择的结果数有3种,
∴他第一个景区恰好选择的概率为.
【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图和画出树状图是解题的关键.
23. (2023四川眉山)某校为落实“双减”工作,推行“五育并举”,计划成立五个兴趣活动小组(每个学生只能参加一个活动小组):A.音乐,B.美术,C.体育,D.阅读,E.人工智能,为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图:
根据图中信息,完成下列问题:
(1)①补全条形统计图(要求在条形图上方注明人数);
②扇形统计图中的圆心角的度数为____________.
(2)若该校有3600名学生,估计该校参加E组(人工智能)学生人数;
(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四位同学中随机抽取两人参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.
【答案】(1)①补全图形见解析;②; (2)人; (3);
【解析】【分析】(1)①先求解总人数,再求解D组人数,再补全统计图即可;②由乘以D组的占比即可得到圆心角的大小;
(2)由3600乘以E组人数的占比即可;
(3)画出树状图,数出所有的情况数和符合题意的情况数,再根据概率公式,即可求解.
【小问1详解】
解:①由题意可得:总人数为:(人),
∴D组人数为:(人),
补全图形如下:
②由题意可得:;
【小问2详解】
该校有3600名学生,估计该校参加E组(人工智能)的学生人数有:
(人);
【小问3详解】
记A,B表示男生,C,D表示女生,画树状图如图:
共有12种等可能的结果,其中抽到一名男生一名女生的有8种结果,

【点睛】本题考查了从统计图与扇形图中获取信息,利用样本估计总体,利用画树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
24. (2023四川南充)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).
(1)已知该班有15人参加A类活动,则参加C类活动有多少人?
(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.
【答案】(1)10人 (2)
【解析】(1)根据A类人数及占比得出总人数,然后乘以C所占比例即可;
(2)令王丽为女1,另外的女生为女2,男生分别为男1,男2,根据画树状图求概率即可求解.
【详解】(1)这次被调查的学生共有(人)
参加C类活动有:(人)
∴参加C类活动有10人;
(2)解:令王丽为女1,另外的女生为女2,男生分别为男1,男2,
画树状图为:
共有12种等可能结果,符合题意的有4种,
∴恰好选中王丽和1名男生的概率为:
【点睛】本题主要考查了扇形统计图的综合运用,样本估计总体,画树状图法求概率,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
25. (2023四川宜宾)某校举办“我劳动,我快乐,我光荣”活动.为了解该校九年级学生周末在家的劳动情况,随机调查了九年级1班的所有学生在家劳动时间(单位:小时),并进行了统计和整理绘制如图所示的不完整统计图.根据图表信息回答以下问题:
类别 劳动时间
A
B
C
D
E
(1)九年级1班学生共有___________人,补全条形统计图;
(2)若九年级学生共有800人,请估计周末在家劳动时间在3小时及以上的学生人数;
(3)已知E类学生中恰好有2名女生3名男生,现从中抽取两名学生做劳动交流,请用列表或画树状图的方法,求所抽的两名学生恰好是一男一女的概率.
【答案】(1)50,条形统计图见解析 (2)人 (3)
【解析】(1)利用C类人数除以对应的百分比即可得到九年级1班的总人数,再分别求出B和D的人数,补全统计图即可;
(2)用九年级学生总人数乘以九年级1班周末在家劳动时间在3小时及以上的学生占的比值即可得到答案;
(3)根据题意列出表格,利用满足要求情况数除以总的情况数即可得到答案.
【详解】(1)由题意得到,(人),
故答案为:50
类别B的人数为(人),类别D的人数为(人),
补全条形统计图如下:
(2)由题意得,(人),
即估计周末在家劳动时间在3小时及以上的学生人数为人;
(3)列表如下:
女1 女2 男1 男2 男3
女1 女1,女2 女1,男1 女1,男2 女1,男3
女2 女2,女1 女2,男1 女2,男2 女2,男3
男1 男1,女1 男1,女2 男1,男2 男1,男3
男2 男2,女1 男2,女2 男2,男1 男2,男3
男3 男3,女1 男3,女2 男3,男1 男3,男2
由表格可知,共有20种等可能的情况,其中一男一女共有12种,
∴所抽的两名学生恰好是一男一女的概率是.
【点睛】此题考查了条形统计图和扇形统计图的信息关联、用树状图或列表法求概率、样本估计总体等知识,熟练掌握用树状图或列表法求概率、样本估计总体是解题的关键.
26. (2023四川遂宁)为贯彻落实党的二十大关于深化全民阅读活动的重要部署,教育部印发了《全国青少年学生读书行动实施方案》,于是某中学开展了以“书香润校园,好书伴成长”为主题的系列读书活动.学校为了解学生周末的阅读情况,采用随机抽样的方式获取了若干名学生的周末阅读时间数据,整理后得到下列不完整的图表:
类别 A类 B类 C类 D类
阅读时长t(小时)
频数 8 m n 4
请根据图表中提供的信息,解答下面的问题:
(1)此次调查共抽取了_________名学生, _________, _________;
(2)扇形统计图中,B类所对应的扇形的圆心角是_________度;
(3)已知在D类的4名学生中有两名男生和两名女生,若从中随机抽取两人参加阅读分享活动,请用列表或画树状图的方法求出恰好抽到一名男生和一名女生的概率.
【答案】(1)40,18,10 (2)162 (3)
【解析】【分析】(1)根据A类学生的人数及占比可求得抽取的学生人数,继而求得m、n的值;
(2)用乘B类人数的占比即可求解;
(3)列表法展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.
【小问1详解】
解:(名),


故答案为:40,18,10;
【小问2详解】
解:,
故答案为:162;
【小问3详解】
解:画树状图为:
共有12种等可能的结果,其中一名男生和一名女生的结果数为8,
所以恰好抽到一名男生和一名女生的概率.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.
27.(2023四川内江) 某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)此次调查一共随机抽取了___________名学生,补全条形统计图(要求在条形图上方注明人数);
(2)扇形统计图中圆心角___________度;
(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.
【答案】(1)200,补全条形统计图见解析
(2)54 (3)恰好选中甲、乙两名同学的概率为.
【解析】【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、B、D、E四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;
(2)用乘以C类型社团的人数占比即可求出扇形统计图中的度数;
(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.
【详解】
(1)(人),
C类型社团的人数为(人),
补全条形统计图如图,
故答案为:200;
(2)解:,
故答案为:54;
(3)解:画树状图如下:
∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,
∴恰好选中甲、乙两名同学的概率为.
【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图并画出树状图或列出表格是解题的关键.
28. (2022四川成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.
等级 时长:(单位:分钟) 人数 所占百分比
4
20
根据图表信息,解答下列问题:
(1)本次调查的学生总人数为_________,表中的值为_________;
(2)该校共有500名学生,请你估计等级为的学生人数;
(3)本次调查中,等级为的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.
【答案】(1)50, (2)200 (3)
【解析】【分析】(1)利用概率计算公式先求出总人数,再求出等级为A的学生人数;
(2)利用概率计算公式先求出等级为B的学生所占的百分比,再求出等级为B的学生人数;
(3)记两名男生为a,b,记两名女生为c,d,通过列出表格列出所有可能的结果,用恰有一男一女的结果数除以总的结果数,即可得到恰好抽到一名男生和一名女生的概率.
【详解】(1)解:∵D组人数为8人,所占百分比为16%,
∴总人数为人,
∴.
(2)解:等级为B的学生所占的百分比为,
∴等级为B的学生人数为人.
(3)解:记两名男生为a,b,记两名女生为c,d,列出表格如下:
∴一共有12种情况,其中恰有一男一女的有8种,
∴恰好抽到一名男生和一名女生的概率.
【点睛】本题考查了列表法与树状图法,概率计算公式的熟练应用是解答本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录