中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题30 尺规作图类问题
一、选择题
1. (2024四川眉山)如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连接,则的周长为( )
A. 7 B. 8 C. 10 D. 12
2. (2024四川南充)如图,已知线段,按以下步骤作图:①过点B作,使,连接;②以点C为圆心,以长为半径画弧,交于点D;③以点A为圆心,以长为半径画弧,交于点E.若,则m的值为( )
A. B. C. D.
3. (2024四川成都市)如图,在中,按以下步骤作图:①以点为圆心,以适当长为半径作弧,分别交,于点,;②分别以,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交于点,交延长线于点.若,,下列结论错误的是( )
A. B.
C. D.
4. (2023四川凉山)如图,在等腰中,,分别以点点为圆心,大于为半径画弧,两弧分别交于点和点,连接,直线与交于点,连接,则的度数是( )
A. B. C. D.
5. (2023四川南充)如图,在中,,以点A为圆心,适当长为半径画弧,分别交于点M,N,再分别以M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点P,画射线与交于点D,,垂足为E.则下列结论错误的是( )
A. B. C. D.
6. (2022四川广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A. B. 3 C. 2 D.
二、填空题
7.(2024四川甘孜) 如图,在中,,,按如下步骤作图:①以点B为圆心,适当长为半径画弧,分别交,于点D,E;②分别以点D,E为圆心,大于长为半径画弧,两弧在的内部相交于点F,作射线交于点G.则的大小为______度.
8. (2023四川成都)如图,在中,是边上一点,按以下步骤作图:①以点为圆心,以适当长为半径作弧,分别交,于点,;②以点为圆心,以长为半径作弧,交于点;③以点为圆心,以长为半径作弧,在内部交前面的弧于点:④过点作射线交于点.若与四边形的面积比为,则的值为___________.
9. (2023四川眉山)如图,中,是中线,分别以点A,点B为圆心,大于长为半径作弧,两孤交于点M,N.直线交于点E.连接交于点F.过点D作,交于点G.若,则的长为____________.
10. (2022四川成都)如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.
11. (2022四川达州)如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧分别相交于点M,N,作直线,交于点D,连接,则的度数为_____.
三、解答题
12. (2024四川达州)如图,线段、相交于点.且,于点.
(1)尺规作图:过点作的垂线,垂足为点、连接、;(不写作法,保留作图痕迹,并标明相应的字母)
(2)若,请判断四边形的形状,并说明理由.(若前问未完成,可画草图完成此问)
13. (2023四川达州)如图,在中,.
(1)尺规作图:作的角平分线交于点(不写做法,保留作图痕迹);
(2)在(1)所作图形中,求的面积.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题30 尺规作图类问题
一、选择题
1. (2024四川眉山)如图,在中,,,分别以点,点为圆心,大于的长为半径作弧,两弧交于点,,过点,作直线交于点,连接,则的周长为( )
A. 7 B. 8 C. 10 D. 12
【答案】C
【解析】本题考查了尺规作图—作垂直平分线,根据垂直平分线的性质即可证明,根据的周长,即可求出答案.
【详解】由作图知,垂直平分,
,
的周长,
,,
的周长,
故选:C.
2. (2024四川南充)如图,已知线段,按以下步骤作图:①过点B作,使,连接;②以点C为圆心,以长为半径画弧,交于点D;③以点A为圆心,以长为半径画弧,交于点E.若,则m的值为( )
A. B. C. D.
【答案】A
【解析】本题考查了勾股定理,根据垂直定义可得,再根据,设,然后在中,利用勾股定理可得,再根据题意可得:,从而利用线段的和差关系进行计算,即可解答.
【详解】∵,
∴,
∵,设
∴,
∴,
由题意得:,
∴,
∵,
∴,
故选:A
3. (2024四川成都市)如图,在中,按以下步骤作图:①以点为圆心,以适当长为半径作弧,分别交,于点,;②分别以,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交于点,交延长线于点.若,,下列结论错误的是( )
A. B.
C. D.
【答案】D
【解析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到为的角平分,利用平行线证明,从而得到,再利用平行四边形的性质得到,再证明,分别求出,,则各选项可以判定.
【详解】由作图可知,为的角平分,
∴,故A正确;
∵四边形为平行四边形,
∴,
∵
∴,
∴,
∴,
∴,故B正确;
∵,
∴,
∵,
∴,
∴,
∴,
∴,,故D错误;
∵,
∴,故C正确,
故选:D.
4. (2023四川凉山)如图,在等腰中,,分别以点点为圆心,大于为半径画弧,两弧分别交于点和点,连接,直线与交于点,连接,则的度数是( )
A. B. C. D.
【答案】B
【解析】先根据等边对等角求出,由作图方法可知,是线段的垂直平分线,则,可得,由此即可得到.
【详解】∵在等腰中,,,
∴,
由作图方法可知,是线段的垂直平分线,
∴,
∴,
∴,
故选B.
【点睛】本题主要考查了等腰三角形的性质与判定,线段垂直平分线的尺规作图,三角形内角和定理等等,灵活运用所学知识是解题的关键.
5. (2023四川南充)如图,在中,,以点A为圆心,适当长为半径画弧,分别交于点M,N,再分别以M,N为圆心,大于的长为半径画弧,两弧在的内部相交于点P,画射线与交于点D,,垂足为E.则下列结论错误的是( )
A. B. C. D.
【答案】C
【解析】由作图方法可知,是的角平分线,则由角平分线的定义和性质即可判定A、B;利用勾股定理求出,利用等面积法求出,由此求出即可判断C、D.
【详解】由作图方法可知,是的角平分线,
∴,故A结论正确,不符合题意;
∵,
∴,故B结论正确,不符合题意;
在中,由勾股定理得,
∵,
∴,
∴,
∴,
∴,故C结论错误,符合题意;
∴,故D结论正确,不符合题意;
故选C.
【点睛】本题主要考查了勾股定理,角平分线的性质和定义,角平分线的尺规作图,灵活运用所学知识是解题的关键.
6. (2022四川广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为( )
A. B. 3 C. 2 D.
【答案】A
【解析】由题意易得MN垂直平分AD,AB=10,则有AD=4,AF=2,然后可得,
进而问题可求解.
【详解】由题意得:MN垂直平分AD,,
∴,
∵BC=6,AC=8,∠C=90°,
∴,
∴AD=4,AF=2,,
∴;
故选A.
【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.
二、填空题
7.(2024四川甘孜) 如图,在中,,,按如下步骤作图:①以点B为圆心,适当长为半径画弧,分别交,于点D,E;②分别以点D,E为圆心,大于长为半径画弧,两弧在的内部相交于点F,作射线交于点G.则的大小为______度.
【答案】
【解析】本题考查了等腰三角形的性质,角平分线的尺规作法,熟练掌握等腰三角形的性质和角平分线的尺规作法是解题的关键.根据,,由等边对等角,结合三角形内角和定理,可得,由尺规作图过程可知为的角平分线,由此可得.
,,
,
根据尺规作图过程,可知为的角平分线,
,
故,
故答案为:.
8. (2023四川成都)如图,在中,是边上一点,按以下步骤作图:①以点为圆心,以适当长为半径作弧,分别交,于点,;②以点为圆心,以长为半径作弧,交于点;③以点为圆心,以长为半径作弧,在内部交前面的弧于点:④过点作射线交于点.若与四边形的面积比为,则的值为___________.
【答案】
【解析】根据作图可得,然后得出,可证明,进而根据相似三角形的性质即可求解.
根据作图可得,
∴,
∴,
∵与四边形的面积比为,
∴
∴
∴,
故答案为:.
【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.
9. (2023四川眉山)如图,中,是中线,分别以点A,点B为圆心,大于长为半径作弧,两孤交于点M,N.直线交于点E.连接交于点F.过点D作,交于点G.若,则的长为____________.
【答案】
【解析】由作图方法可知是线段的垂直平分线,则是的中线,进而得到点F是的重心,则,证明,利用相似三角形的性质得到,则.
【详解】解:由作图方法可知是线段的垂直平分线,
∴点E是的中点,
∴是的中线,
又∵是的中线,且与交于点F,
∴点F是的重心,
∴,
∵,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】本题主要考查了三角形重心的性质,相似三角形的性质与判定,线段垂直平分线的尺规作图,推出点F是的重心是解题的关键.
10. (2022四川成都)如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.
【答案】7
【解析】连接EC,依据垂直平分线的性质得.由已知易得,在Rt△AEC中运用勾股定理求得AE,即可求得答案.
【详解】由已知作图方法可得,是线段的垂直平分线,
连接EC,如图,
所以,
所以,
所以∠BEC=∠CEA=90°,
因为,,
所以,
在中,,
所以,
因此的长为7.
故答案为:7.
【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得即可.
11. (2022四川达州)如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧分别相交于点M,N,作直线,交于点D,连接,则的度数为_____.
【答案】
【解析】根据作图可知,,根据直角三角形两个锐角互余,可得,根据即可求解.
【详解】∵在中,,,
∴,
由作图可知是的垂直平分线,
,
,
,
故答案为:.
【点睛】本题考查了基本作图,垂直平分线的性质,等边对等角,直角三角形的两锐角互余,根据题意分析得出是的垂直平分线,是解题的关键.
三、解答题
12. (2024四川达州)如图,线段、相交于点.且,于点.
(1)尺规作图:过点作的垂线,垂足为点、连接、;(不写作法,保留作图痕迹,并标明相应的字母)
(2)若,请判断四边形的形状,并说明理由.(若前问未完成,可画草图完成此问)
【答案】(1)见解析 (2)四边形是平行四边形,理由见解析
【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:
(1)先根据垂线的尺规作图方法作出点F,再连接、即可;
(2)先证明,得到,再证明,进而证明,得到,即可证明四边形是平行四边形.
【小问1详解】
解:如图所示,即为所求;
【小问2详解】
解:四边形是平行四边形,理由如下:
∵,
∴,
又∵,
∴,
∴,
∵,
∴,
又∵,
∴,
∴,
∴四边形是平行四边形.
13. (2023四川达州)如图,在中,.
(1)尺规作图:作的角平分线交于点(不写做法,保留作图痕迹);
(2)在(1)所作图形中,求的面积.
【答案】(1)见解析 (2)
【解析】【分析】(1)以A为圆心,任意长为半径画弧,分别交、,在以两交点为圆心,以大于它们长度为半径画弧,交于一点,过A于该点作射线交于点P,则即为所求;
(2)过点P作,根据和题中条件可求出的面积,再结合角平分线的性质即可求解.
【小问1详解】
解:以A为圆心,任意长为半径画弧,分别交、,在以两交点为圆心,以大于它们长度为半径画弧,交于一点,过A于该点作射线交于点P,则即为所求.
【小问2详解】
解:过点P作,如图所示,
由(1)得:,
∵,
∴,
∴,
∵,
∴,即,
∵,
∴,
∴;
【点睛】本题主要考查作图—基本作图,解题关键是掌握角平线的尺规作图及角平分线的性质.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)