2022-2024四川省各地数学三年真题分类汇编:专题11 一次函数与反比例函数综合(原卷+解析版)

文档属性

名称 2022-2024四川省各地数学三年真题分类汇编:专题11 一次函数与反比例函数综合(原卷+解析版)
格式 zip
文件大小 2.5MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-08-19 15:18:37

文档简介

中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题11 一次函数与反比例函数综合
一、选择题
1. (2024四川泸州)已知关于x的一元二次方程无实数根,则函数与函数的图象交点个数为( )
A. 0 B. 1 C. 2 D. 3
二、填空题
2. (2023四川达州)如图,一次函数与反比例函数图象相交于两点,以为边作等边三角形,若反比例函数的图象过点,则的值为_____________.
三、解答题
3. (2024四川成都市)如图,在平面直角坐标系中,直线与直线相交于点,与轴交于点,点在反比例函数图象上.
(1)求,,的值;
(2)若,,,为顶点的四边形为平行四边形,求点的坐标和的值;
(3)过,两点的直线与轴负半轴交于点,点与点关于轴对称.若有且只有一点,使得与相似,求的值.
4. (2024四川德阳)如图,一次函数与反比例函数的图象交于点.
(1)求的值和反比例函数的解析式;
(2)将直线向下平移个单位长度后得直线,若直线与反比例函数的图象的交点为,求的值,并结合图象求不等式的解集.
5. (2024四川广安)如图,一次函数(,为常数,)的图象与反比例函数(为常数,)的图象交于,两点.
(1)求一次函数和反比例函数的解析式.
(2)直线与轴交于点,点是轴上的点,若的面积大于12,请直接写出的取值范围.
6. (2024四川广元)如图,已知反比例函数和一次函数的图象相交于点,两点,O为坐标原点,连接,.
(1)求与的解析式;
(2)当时,请结合图象直接写出自变量x取值范围;
(3)求的面积.
7. (2024四川乐山)如图,已知点、在反比例函数的图象上,过点的一次函数的图象与轴交于点.
(1)求、的值和一次函数的表达式;
(2)连接,求点到线段的距离.
8. (2024四川凉山)如图,正比例函数与反比例函数的图象交于点.
(1)求反比例函数的解析式;
(2)把直线向上平移3个单位长度与的图象交于点,连接,求的面积.
9. (2024四川泸州)如图,在平面直角坐标系中,一次函数与x轴相交于点,与反比例函数的图象相交于点.
(1)求一次函数和反比例函数的解析式;
(2)直线与反比例函数和的图象分别交于点C,D,且,求点C的坐标.
10. (2024四川眉山)如图,在平面直角坐标系中,一次函数与反比例函数的图象交于点,,与轴,轴分别交于,两点.
(1)求一次函数和反比例函数的表达式;
(2)若点在轴上,当的周长最小时,请直接写出点的坐标;
(3)将直线向下平移个单位长度后与轴,轴分别交于,两点,当时,求的值.
11.(2024四川南充) 如图,直线经过两点,与双曲线交于点.
(1)求直线和双曲线的解析式.
(2)过点C作轴于点D,点P在x轴上,若以O,A,P为顶点的三角形与相似,直接写出点P的坐标.
12. (2024四川自贡)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,两点.
(1)求反比例函数和一次函数的解析式;
(2)P是直线上的一个动点,的面积为21,求点P坐标;
(3)点Q在反比例函数位于第四象限的图象上,的面积为21,请直接写出Q点坐标.
13. (2023四川成都)如图,在平面直角坐标系中,直线与y轴交于点A,与反比例函数的图象的一个交点为,过点B作AB的垂线l.
(1)求点A的坐标及反比例函数的表达式;
(2)若点C在直线l上,且的面积为5,求点C的坐标;
(3)P是直线l上一点,连接PA,以P为位似中心画,使它与位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.
14. (2023四川广安)如图,一次函数(为常数,)的图象与反比例函数为常数,的图象在第一象限交于点,与轴交于点.
(1)求一次函数和反比例函数的解析式.
(2)点在轴上,是以为腰的等腰三角形,请直接写出点的坐标.
15.(2023四川广元) 如图,已知一次函数的图象与反比例函数的图象交于,B两点,与x轴交于点C,将直线沿y轴向上平移3个单位长度后与反比例函数图象交于点D,E.
(1)求k,m的值及C点坐标;
(2)连接,,求的面积.
16. (2023四川乐山)如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B, 与y轴交于点.
(1)求m的值和一次函数的表达式;
(2)已知P为反比例函数图象上的一点,,求点P的坐标.
17. (2023四川泸州)如图,在平面直角坐标系中,直线与,轴分别相交于点A,B,与反比例函数的图象相交于点C,已知,点C的横坐标为2.
(1)求,的值;
(2)平行于轴的动直线与和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.
18. (2023四川眉山)如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,与反比例函数在第四象限内的图象交于点.
(1)求反比例函数的表达式:
(2)当时,直接写出x的取值范围;
(3)在双曲线上是否存在点P,使是以点A为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2022-2024四川省各地数学三年中考真题专题分类汇编
专题11 一次函数与反比例函数综合
一、选择题
1. (2024四川泸州)已知关于x的一元二次方程无实数根,则函数与函数的图象交点个数为( )
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.
【详解】∵方程无实数根,
∴,
解得:,则函数的图象过二,四象限,
而函数的图象过一,三象限,
∴函数与函数的图象不会相交,则交点个数为0,
故选:A.
二、填空题
2. (2023四川达州)如图,一次函数与反比例函数图象相交于两点,以为边作等边三角形,若反比例函数的图象过点,则的值为_____________.
【答案】
【解析】过点A作轴交x轴于点D,过点C作轴于点E,连接,首先联立求出,,然后利用勾股定理求出,,然后证明出,利用相似三角形的性质得到,,最后将代入求解即可.
【详解】如图所示,过点A作轴交x轴于点D,过点C作轴于点E,连接,
∵一次函数与反比例函数的图象相交于两点,
∴联立,即,
∴解得,
∴,,
∴,,
∴,
∴,
∵是等边三角形,
∴,,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
又∵,
∴,
∴,即,
∴解得,,
∴点C的坐标为,
∴将代入得,.
故答案为:.
【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
三、解答题
3. (2024四川成都市)如图,在平面直角坐标系中,直线与直线相交于点,与轴交于点,点在反比例函数图象上.
(1)求,,的值;
(2)若,,,为顶点的四边形为平行四边形,求点的坐标和的值;
(3)过,两点的直线与轴负半轴交于点,点与点关于轴对称.若有且只有一点,使得与相似,求的值.
【答案】(1),,
(2)点的坐标为或,
(3)
【解析】【分析】(1)利用待定系数法求解即可;
(2)设,根据平行四边形的性质,分当为对角线时,当为对角线时,当为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;
(3)设点,则,,利用相似三角形的性质得,进而解方程得,则,利用待定系数法求得直线的表达式为,联立方程组得,根据题意,方程有且只有一个实数根,利用根的判别式求解即可.
【小问1详解】
解:由题意,将代入中,得,则,
将代入中,得,则,
∴,
将代入中,得,则;
【小问2详解】
解:设,由(1)知,
若,,,为顶点的四边形为平行四边形,分以下情况:
当为对角线时,则,解得,
∴,则;
当为对角线时,则,解得,
∴,则;
当为对角线时,依题意,这种情况不存在,
综上所述,满足条件的点的坐标为或,;
【小问3详解】
解:如图,设点,则,,
若,则,即,
∴,即,
解得,
∵,∴,则,
设直线的表达式为,
则,解得,
∴直线的表达式为,
联立方程组,得,
∵有且只有一点,
∴方程有且只有一个实数根,
∴,解得;
由题意,不存在,
故满足条件的k值为.
【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.
4. (2024四川德阳)如图,一次函数与反比例函数的图象交于点.
(1)求的值和反比例函数的解析式;
(2)将直线向下平移个单位长度后得直线,若直线与反比例函数的图象的交点为,求的值,并结合图象求不等式的解集.
【答案】(1);反比例函数的解析式为
(2);不等式的解集为
【解析】【分析】本题主要考查反比例函数与一次函数的交点问题:
(1)把代入求出,得,从而可求出的值;
(2)由平移得直线与直线平行,得,把点代入得,得,代入,求出,得出;由图象得当时,在直线的下方,故可求出不等式的解集.
【小问1详解】
解:∵一次函数与反比例函数的图象交于点,
∴;
∴,
把代入,得:,
∴,
∴反比例函数的解析式为:;
【小问2详解】
解:∵直线是将直线向下平移个单位长度后得到的,
∴直线与直线平行,
∴,
∴,
∵直线与反比例函数图象的交点为,
把代入得,,
解得,,
∴,
把代入,得:,
∴,
∴;
由图象知,当时,在直线的下方,
∴不等式的解集为
5. (2024四川广安)如图,一次函数(,为常数,)的图象与反比例函数(为常数,)的图象交于,两点.
(1)求一次函数和反比例函数的解析式.
(2)直线与轴交于点,点是轴上的点,若的面积大于12,请直接写出的取值范围.
【答案】(1),
(2)或
【解析】【分析】(1)将A点坐标代入反比例函数解析式求得反比例函数,再把B点坐标代入所求得的反比例函数解析式,求得m,进而把A、B的坐标代入一次函数解析式便可求得一次函数的解析式;
(2)由一次函数的解析式求得与x轴的交点C的坐标,然后的面积大于12,再建立不等式即可求解.
【小问1详解】
解:∵在反比例函数的图象上,
∴,
∴反比例函数的解析式为:,
把代入,得,
∴,
把,都代入一次函数,得 ,
解得,
∴一次函数的解析式为:;
【小问2详解】
解:如图,
对于,当,解得,
∴,
∵,
∴,
∵的面积大于12,
∴,即,
当时,则,
解得:,
当时,则,
解得:;
∴或.
【点睛】本题考查了一次函数和反比例函数的交点问题,反比例函数图象上点的坐标特征,三角形的面积等,求得交点坐标是解题的关键.
6. (2024四川广元)如图,已知反比例函数和一次函数的图象相交于点,两点,O为坐标原点,连接,.
(1)求与的解析式;
(2)当时,请结合图象直接写出自变量x取值范围;
(3)求的面积.
【答案】(1);
(2)或
(3)
【解析】【分析】本题考查反比例函数图象和性质,反比例函数与一次函数综合,求出一次函数与反比例函数图象交点坐标是关键;
(1)根据题意可得,即有,问题随之得解;
(2)表示反比例函数的图象在一次函数的图象上方时,对应的自变量的取值范围,据此数形结合作答即可;
(3)若与y轴相交于点C,可得,则,根据,问题即可得解.
【小问1详解】
由题知,
∴,
∴,,
∴,
把,代入得,
∴,
∴;
【小问2详解】
由图象可知自变量x的取值范围为或
【小问3详解】
若与y轴相交于点C,
当时,,
∴,即:,
∴.
7. (2024四川乐山)如图,已知点、在反比例函数的图象上,过点的一次函数的图象与轴交于点.
(1)求、的值和一次函数的表达式;
(2)连接,求点到线段的距离.
【答案】(1),,
(2)点到线段的距离为
【解析】【分析】(1)根据点、在反比例函数图象上,代入即可求得、的值;根据一次函数过点,,代入求得,,即可得到表达式;
(2)连接,过点作,垂足为点,过点作,垂足为点,可推出 轴,、、的长度,然后利用勾股定理计算出的长度,最后根据,计算得的长度,即为点到线段的距离.
【小问1详解】
点、在反比例函数图象上

又一次函数过点,
解得:
一次函数表达式为:;
【小问2详解】
如图,连接,过点作,垂足点,过点作,垂足为点,

轴,
点,,
点,,
在中,


∴,即点C到线段的距离为.
【点睛】本题考查了求反比例函数值,待定系数法求一次函数表达式,勾股定理,与三角形高有关的计算,熟练掌握以上知识点并作出适当的辅助线是解题的关键.
8. (2024四川凉山)如图,正比例函数与反比例函数的图象交于点.
(1)求反比例函数的解析式;
(2)把直线向上平移3个单位长度与的图象交于点,连接,求的面积.
【答案】(1) (2)6
【解析】【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.
(1)待定系数法求出反比例函数解析式即可;
(2)先得到平移后直线解析式,联立方程组求出点坐标,根据平行线间的距离可得,代入数据计算即可.
【小问1详解】
解:点在正比例函数图象上,
,解得,

在反比例函数图象上,

反比例函数解析式为.
小问2详解】
解:把直线向上平移3个单位得到解析式为,
令,则,
∴记直线与轴交点坐标为,连接,
联立方程组,
解得,(舍去),

由题意得:,
∴同底等高,

9. (2024四川泸州)如图,在平面直角坐标系中,一次函数与x轴相交于点,与反比例函数的图象相交于点.
(1)求一次函数和反比例函数的解析式;
(2)直线与反比例函数和的图象分别交于点C,D,且,求点C的坐标.
【答案】(1)一次函数解析式为,反比例函数解析式为
(2)
【解析】【分析】本题主要考查了一次函数与反比例函数综合,反比例函数与几何综合:
(1)利用待定系数法求解即可;
(2)先利用反比例函数比例系数的几何意义得到,进而得到;再证明,推出,设,则,求出,可得,解方程即可得到答案.
【小问1详解】
解:把代入中得:,解得,
∴反比例函数解析式为;
把,代入中得:,
∴,
∴一次函数解析式;
【小问2详解】
解:如图所示,过点B作轴于E,设与x轴交于F,
∵直线与反比例函数和的图象分别交于点C,D,
∴,
∴,
∴;
∵轴,点B在反比例函数的图象上,
∵,
∵,
∴,
设,则,
∵,
∴,
∴,
∴,
解得或(舍去),
经检验是原方程的解,且符合题意,
∴.
10. (2024四川眉山)如图,在平面直角坐标系中,一次函数与反比例函数的图象交于点,,与轴,轴分别交于,两点.
(1)求一次函数和反比例函数的表达式;
(2)若点在轴上,当的周长最小时,请直接写出点的坐标;
(3)将直线向下平移个单位长度后与轴,轴分别交于,两点,当时,求的值.
【答案】(1)一次函数的表达式为,反比例函数的表达式为
(2)点的坐标为
(3)或
【解析】【分析】本题考查了待定系数法求函数的解析式,轴对称-最短路径问题,勾股定理,正确地求出函数的解析式是解题的关键.
(1)根据已知条件列方程求得,得到反比例函数的表达式为,求得,解方程组即可得到结论;
(2)如图,作点A关于y轴的对称点E,连接交y轴于P,则此时,的周长最小,根据轴对称的性质得到,得到直线的解析式为,当时,,于是得到点P的坐标为;
(3)将直线向下平移a个单位长度后得直线的解析式为,得到,根据勾股定理即可得到结论.
【小问1详解】
解:一次函数与反比例函数的图象交于点,,


反比例函数的表达式为,
把代入得,



把,代入得,

解得,
一次函数的表达式为;
【小问2详解】
解:如图,作点关于轴的对称点,连接交轴于,
此时,的周长最小,
点,

设直线的解析式为,

解得,
直线的解析式为,
当时,,
点的坐标为;
小问3详解】
解:将直线向下平移个单位长度后与轴,轴分别交于,两点,
直线的解析式为,
,,


解得或.
11.(2024四川南充) 如图,直线经过两点,与双曲线交于点.
(1)求直线和双曲线的解析式.
(2)过点C作轴于点D,点P在x轴上,若以O,A,P为顶点的三角形与相似,直接写出点P的坐标.
【答案】(1)直线解析式为,双曲线解析式为
(2)点P坐标为或或或
【解析】【分析】本题考查反比例函数与一次函数的综合应用,相似三角形的性质:
(1)待定系数法求出一次函数的解析式,进而求出点的坐标,再利用待定系数法求出反比例函数的解析式即可;
(2)分和,两种情况进行讨论求解即可.
【小问1详解】
解:直线经过两点,
∴,解得:,
∴,
当时,,解得:,
∴,
∴,
∴;
【小问2详解】
∵,,
∴,,
当以O,A,P为顶点的三角形与相似时,分两种情况进行讨论:
①当,则:,
∴,
∴,
∴或;
②当,则:,
∴,
∴,
∴或;
综上:点P坐标为或或或.
12. (2024四川自贡)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,两点.
(1)求反比例函数和一次函数的解析式;
(2)P是直线上的一个动点,的面积为21,求点P坐标;
(3)点Q在反比例函数位于第四象限的图象上,的面积为21,请直接写出Q点坐标.
【答案】(1),
(2)点P坐标为或;
(3)Q点坐标为或
【解析】【分析】(1)先求出,再代入,得出,再运用待定系数法解一次函数的解析式,即可作答.
(2)先得出直线与直线的交点的坐标,根据求不规则面积运用割补法列式化简得,解出,即可作答.
(3)要进行分类讨论,当点在点的右边时和点在点的左边时,根据求不规则面积运用割补法列式,其中运用公式法解方程,注意计算问题,即可作答.
【小问1详解】
解:依题意把代入,得出
解得
把代入中,得出

则把和分别代入
得出
解得
∴;
小问2详解】
解:记直线与直线的交点为

∴当时,则

∵P是直线上的一个动点,
∴设点,
∵的面积为21,



解得或
∴点P坐标为或;
【小问3详解】
解:由(1)得出
∵点Q在反比例函数位于第四象限的图象上,
∴设点Q的坐标为
如图:点在点的右边时
∵的面积为21,和

整理得
解得(负值已舍去)
经检验是原方程的解,
∴Q点坐标为
如图:点在点的左边时
∵的面积为21,和

整理得
解得,符合题意,,不符合题意,
则,故
综上:Q点坐标为或.
【点睛】本题考查了一次函数与反比例函数的交点问题,几何综合,待定系数法求一次函数的解析式,割补法求面积,公式法解方程,正确掌握相关性质内容是解题的关键.
13. (2023四川成都)如图,在平面直角坐标系中,直线与y轴交于点A,与反比例函数的图象的一个交点为,过点B作AB的垂线l.
(1)求点A的坐标及反比例函数的表达式;
(2)若点C在直线l上,且的面积为5,求点C的坐标;
(3)P是直线l上一点,连接PA,以P为位似中心画,使它与位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.
【答案】(1)点A的坐标为,反比例函数的表达式为;
(2)点C的坐标为或
(3)点P的坐标为;m的值为3
【解析】【分析】(1)利用直线解析式可的点C的坐标,将点代入可得a的值,再将点代入反比例函数解析式可得k的值,从而得解;
(2)设直线l于y轴交于点M,由点B的坐标和直线l是的垂线先求出点M的坐标,再用待定系数法求直线l的解析式,C点坐标为,根据(分别代表点B与点C的横坐标)可得点C的横坐标,从而得解;
(3) 位似图形的对应点与位似中心三点共线可知点B的对应点也在直线l上,不妨设为点E,则点A的对应点是点D,直线l与双曲线的解析式联立方程组得到,由得到,继而得到直线与直线的解析式中的一次项系数相等,设直线的解析式是:,将代入求得的解析式是:,再将直线与双曲线的解析式联立求得,再用待定系数法求出的解析式是,利用直线的解析式与直线l的解析式联立求得点P的坐标为,再用两点间的距离公式得到,从而求得.
【小问1详解】
解:令,则
∴点A的坐标为,
将点代入得:
解得:

将点代入得:
解得:
∴反比例函数的表达式为;
【小问2详解】
解:设直线l于y轴交于点M,直线与x轴得交点为N,
令解得:
∴,
∴,
又∵,

∵,

又∵直线l是的垂线即,,
∴,

设直线l得解析式是:,
将点,点代入得:
解得:
∴直线l的解析式是:,
设点C的坐标是
∵,(分别代表点B与点C的横坐标)
解得: 或6,
当时,;
当时,,
∴点C的坐标为或
【小问3详解】
∵位似图形的对应点与位似中心三点共线,
∴点B的对应点也在直线l上,不妨设为点E,则点A的对应点是点D,
∴点E是直线l与双曲线的另一个交点,
将直线l与双曲线的解析式联立得:
解得:或

画出图形如下:
又∵


∴直线与直线的解析式中的一次项系数相等,
设直线的解析式是:
将点代入得:
解得:
∴直线的解析式是:
∵点D也在双曲线上,
∴点D是直线与双曲线的另一个交点,
将直线与双曲线的解析式联立得:
解得:或

设直线的解析式是:
将点,代入得:
解得:
∴直线的解析式是:,
又将直线的解析式与直线l的解析式联立得:
解得:
∴点P的坐标为


【点睛】本题考查直线与坐标轴的交点,求反比例函数解析式,反比例函数的图象与性质,反比例函数综合几何问题,三角形的面积公式,位似的性质等知识,综合性大,利用联立方程组求交点和掌握位似的性质是解题的关键.
14. (2023四川广安)如图,一次函数(为常数,)的图象与反比例函数为常数,的图象在第一象限交于点,与轴交于点.
(1)求一次函数和反比例函数的解析式.
(2)点在轴上,是以为腰的等腰三角形,请直接写出点的坐标.
【答案】(1)一次函数的解析式为,反比例函数的解析式为
(2)或或
【解析】【分析】(1)根据待定系数法,把已知点代入再解方程即可得出答案;
(2)首先利用勾股定理求出得的长,再分两种情形讨论即可.
【小问1详解】
解:把点代入一次函数得,
解得:,
故一次函数的解析式为,
把点代入,得,

把点代入,得,
故反比例函数的解析式为;
【小问2详解】
解:,,,
当时,或,
当时,点关于直线对称,

综上所述:点的坐标为或或.
【点睛】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,等腰三角形的性质等知识,运用分类思想是解题的关键.
15.(2023四川广元) 如图,已知一次函数的图象与反比例函数的图象交于,B两点,与x轴交于点C,将直线沿y轴向上平移3个单位长度后与反比例函数图象交于点D,E.
(1)求k,m的值及C点坐标;
(2)连接,,求的面积.
【答案】(1);; (2)
【解析】【分析】(1)把点代入和求出k、m的值即可;把代入的解析式,求出点C的坐标即可;
(2)延长交x轴于点F,先求出平移后的关系式,再求出点D的坐标,然后求出解析式,得出点F的坐标,根据求出结果即可.
【详解】(1)把点代入和得:
,,
解得:,,
∴的解析式为,反比例函数解析式为,
把代入得:,
解得:,
∴点C的坐标为;
(2)延长交x轴于点F,如图所示:
将直线沿y轴向上平移3个单位长度后解析式:

联立,
解得:,,
∴点,
设直线的解析式为,把,代入得:

解得:,
∴直线的解析式为,
把代入得,
解得:,
∴点F的坐标为,
∴,


【点睛】本题主要考查了一次函数和反比例函数的综合应用,求一次函数解析式,反比例函数解析式,解题的关键是数形结合,熟练掌握待定系数法,能求出一次函数和反比例函数的交点坐标.
16. (2023四川乐山)如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B, 与y轴交于点.
(1)求m的值和一次函数的表达式;
(2)已知P为反比例函数图象上的一点,,求点P的坐标.
【答案】(1) (2)或
【解析】【分析】(1)先把点A坐标代入反比例函数解析式求出m的值,进而求出点A的坐标,再把点A和点C的坐标代入一次函数解析式中求出一次函数解析式即可;
(2)先求出,,过点A作轴于点H,过点P作轴于点D,如图所示,根据可得,求出,则点P的纵坐标为2或,由此即可得到答案.
【小问1详解】
解:点在反比例函数的图象上,



又点,都在一次函数的图象上,

解得,
一次函数的解析式为.
【小问2详解】
解:对于,当时,,
∴,

∵,
过点A作轴于点H,过点P作轴于点D,如图所示.



解得.
点P的纵坐标为2或.
将代入得,
将代入得,
∴点或.
【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.
17. (2023四川泸州)如图,在平面直角坐标系中,直线与,轴分别相交于点A,B,与反比例函数的图象相交于点C,已知,点C的横坐标为2.
(1)求,的值;
(2)平行于轴的动直线与和反比例函数的图象分别交于点D,E,若以B,D,E,O为顶点的四边形为平行四边形,求点D的坐标.
【答案】(1),;
(2)点D的坐标为或
【解析】【分析】(1)求得,利用待定系数法即可求得直线的式,再求得,据此即可求解;
(2)设点,则点,利用平行四边形的性质得到,解方程即可求解.
【小问1详解】
解:∵,
∴,
∵直线经过点,
∴,解得,,
∴直线的解析式为,
∵点C的横坐标为2,
∴,
∴,
∵反比例函数的图象经过点C,
∴;
【小问2详解】
解:由(1)得反比例函数的解析式为,
令,则,
∴点,
设点,则点,
∵以B,D,E,O为顶点的四边形为平行四边形,
∴,
∴,整理得或,
由得,
整理得,
解得,
∵,
∴,
∴点;
由得,
整理得,
解得,
∵,
∴,
∴点;
综上,点D的坐标为或.
【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质,解一元二次方程,用方程的思想解决问题是解本题的关键.
18. (2023四川眉山)如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,与反比例函数在第四象限内的图象交于点.
(1)求反比例函数的表达式:
(2)当时,直接写出x的取值范围;
(3)在双曲线上是否存在点P,使是以点A为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)
(2)或
(3)或
【解析】【分析】(1)将,代入,求得一次函数表达式,进而可得点C的坐标,再将点C的坐标代入反比例函数即可;
(2)将一次函数与反比例函数联立方程组,求得交点坐标即可得出结果;
(3)过点A作交y轴于点M,勾股定理得出点M的坐标,在求出直线AP的表达式,与反比例函数联立方程组即可.
【小问1详解】
解:把,代入中得:,
∴,
∴直线的解析式为,
在中,当时,,
∴,
把代入中得:,
∴,
∴反比例函数的表达式;
【小问2详解】
解:联立,解得或,
∴一次函数与反比例函数的两个交点坐标分别为,
∴由函数图象可知,当或时,一次函数图象在反比例函数图象上方,
∴当时,或;
【小问3详解】
解:如图所示,设直线交y轴于点,
∵,,
∴,,,
∵是以点A为直角顶点的直角三角形,
∴,
∴,
∴,
解得,
∴,
同理可得直线的解析式为,
联立,解得或,
∴点P坐标为或.
【点睛】本题主要考查了反比例函数与一次函数综合,勾股定理,正确利用待定系数法求出对应的函数解析式是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录