2015学年嘉定区高三年级第一次质量调研
数学试卷(文)
考生注意:
1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码.
2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分.
3.本试卷共有23道试题,满分150分,考试时间120分钟.
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.
1.____________.
2.设集合,,则__________.
3.若函数(且)的反函数的图像过点,则_________.
4.已知一组数据,,,,的平均数是,则这组数据的方差是_________.
5.在正方体中,为棱的中点,则异面直线与所成的
角的大小为__________________(结果用反三角函数值表示).
6.若圆锥的底面周长为,侧面积也为,则该圆锥的体积为______________.
7.已知,则____________.
8.某程序框图如图所示,则该程序运行后
输出的值是_____________.
9.过点的直线与圆相切,且与直线垂直,则实数的值
为___________.
10.从名男同学,名女同学中任选人参加知识竞赛,则选到的名同学中至少有名
男同学的概率是____________.
11.设,,,则_________时,点,,
共线.
12.已知,若,则_______.
13.设数列满足,,记数列前项的积为,则的值为
__________.
14.对于函数,若存在定义域内某个区间,使得在上的
值域也是,则称函数在定义域上封闭.如果函数在
上封闭,那么_____________.
二.选择题(本大题满分20分)本大题共有 ( http: / / www.21cnjy.com )4题,每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,每题选对得5分,否则一律得零分.
15.“函数为偶函数”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
16.下列四个命题:
①任意两条直线都可以确定一个平面;
②若两个平面有个不同的公共点,则这两个平面重合;
③直线,,,若与共面,与共面,则与共面;
④若直线上有一点在平面外,则在平面外.
其中错误命题的个数是( )
A. B. C. D.
17.若椭圆的焦距为,则的值是( )
A. B. C. D.
18.已知等比数列中,各项都是正数,且,,成等差数列,则等
于( )
A. B. C. D.
三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图①,有一个长方体形状的敞口玻璃容器,底面是边长为的正方形,高为,内有深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少;
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
已知,设,,记函数.
(1)求函数的最小正周期和单调递增区间;
(2)设△的角,,所对的边分别为,,,若,,,求△的面积.
21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
设函数(且)是奇函数.
(1)求常数的值;
(2)设,试判断函数在上的单调性,并解关于的不等式.
22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知抛物线,准线方程为,直线过定点()且与抛物线交于、两点,为坐标原点.
(1)求抛物线的方程;
(2)是否为定值,若是,求出这个定值;若不是,请说明理由;
(3)当时,设,记,求的解析式.
23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设复数,其中,,为虚数单位,,,复数在复平面上对应的点为.
(1)求复数,,的值;
(2)证明:当()时,∥;
(3)求数列的前项之和.
2015学年嘉定区高三年级第一次质量调研
数学试卷(文)参考答案及评分标准
一.填空题(每题4分,满分56分)
1. 2.(或) 3. 4.
5. 6. 7. 8.
9. 10. 11.或
12. 13. 14.
二.选择题(每题5分,满分20分)
15.B 16.C 17.A 18.D
三.解答题(共5题,满分74分)答案中的分数为分步累积分数
19.本题12分,第1小题6分,第2小题6分.
(1)如图③,当倾斜至上液面经过点时,容器内溶液恰好不会溢出,
此时最大. ………………………………………………………………(2分)
解法一:此时,梯形的面积等于(), …………(3分)
因为,所以,,
即,解得,. ………………(5分)
所以,要使倾斜后容器内的溶液不会溢出,的最大值是. ……………(6分)
解法二:此时,△的面积等于图①中没有液体部分的面积,
即(), ………………………………………………(3分)
因为,所以,即,
解得,. …………………………………………(5分)
所以,要使倾斜后容器内的溶液不会溢出,的最大值是. …………(6分)
(2)如图④,当时,设上液面为,因为,
所以点在线段上, …………………………………………(1分)
此时,,
(), …………………………(3分)
剩余溶液的体积为(), …………………(4分)
由题意,原来溶液的体积为,
因为,所以倒出的溶液不满. ……(5分)
所以,要倒出不少于的溶液,当时,不能实现要求.…(6分)
20.本题14分,第1小题7分,第2小题7分.
(1)
. ……………………………………(3分)
所以的最小正周期是. ………………………(4分)
由,, ……………………(6分)
得函数的单调递增区间是(). ……(7分)
(2)由,得, …………………………(1分)
因为,所以,
所以,. ………………………………(3分)
在△中,由余弦定理, …………(4分)
得,即, ………………(5分)
所以△的面积. …………(7分)
21.本题14分,第1小题6分,第2小题8分.
(1)解法一:函数的定义域为,因为是奇函数,所以,.…………………………………………………………(3分)
当时,,,是奇函数.
所以,所求的值为. …………………………………………………………(6分)
解法二:函数的定义域为,
由题意,对任意,, …………………………………(2分)
即,, ………………………(4分)
因为,所以,. ……………………………………………(6分)
(2)由(1),,任取,,且,
则,
因为,,所以,又,所以,
即,所以函数在上是单调递增函数. ………………(4分)
(注:也可以这样解答:,在上是增函数,在上是减函数,则在上是增函数,所以在上是增函数.)
由,得,即, ……(6分)
所以,即,解得. …………(8分)
22.本题16分,第1小题4分,第2小题6分,第3小题6分.
(1)由题意,,, ………………………………………………(2分)
故抛物线方程为. …………………………………………………………(4分)
(2)设,,直线,则
…………………………(2分)
于是,, ……(4分)
因为点是定点,所以是定值,所以是定值,此定值为.…(6分)
(3),设,则,
,故, ………………(2分)
因为点在抛物线上,所以,得.……(4分)
又为抛物线的焦点,故
,即(). ………………………………(6分)
23.本题18分,第1小题4分,第2小题6分,第3小题8分.
(1),,.…………(4分)
(算错一个扣1分,即算对一个得2分,算对两个得3分)
(2)由已知,得, ………………(1分)
当时,, ………………………(3分)
令,则,
即则存在非零实数(),使得. …………(5分)
所以,当()时,∥. ……………………(6分)
(3)因为,故,, …………(2分)
所以, …………………………………………………………(3分)
又,,,, …………………………(4分)
, ……………………………………(7分)
所以数列的前项之和为. ……………………………………(8分)
开始
,
输出
结束
是
否
①
②
A
B
C
D
A
B
C
D
③
④
E
F