鲁教版九年级数学上册第三章:构建二次函数问题解决最值问题(课件19张PPT+教案+导学案等9份打包)

文档属性

名称 鲁教版九年级数学上册第三章:构建二次函数问题解决最值问题(课件19张PPT+教案+导学案等9份打包)
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2016-01-18 08:41:06

文档简介

构建二次函数问题解决最值问题学情分析
凤城初中 韩桂玲
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
初四五班学生学习两极分化现象特别严重,后面部分学生学习习惯不好,不爱动脑,惰性比较强,学习优秀的学生思考问题比较快,因此,要善于调动这一部分同学的积极性。在解决函数的实际问题时,要善于从实际问题的情境中抽象出数学模型,使实际问题转化为数学问题。通过数学方法解决问题。学生刚刚学习了“二次函数的概念、图象及性质、二次函数的顶点坐标”,因此,只要教师能为学生搭建一个有梯次的研究型学习的平台,学生完全有可能由对具体事例的自主分析,建立数学模型,如再经教师巧妙引领,势必会激发学生对学习的兴趣,从而体会学习的快乐。
效果分析
凤城初中 韩桂玲
新课程理念下开放式教学,是根据学生个性发展的需求而进行的教学,为使课堂充满生趣,充满孜孜不倦的探索。要掌握学生课堂参与度的因素:
1、提供学生积极、主动、参与学习活动的机会。
2、使课堂充满求知欲(问题意识)和表现欲(参与意识),好奇求知的欢乐和自我表现的愿望是推动课堂教学发展的永恒内在动力。??
3、营造充满情趣的学习情境,宽松平等民主的人际环境,创设有利于体验成功、承受挫折的学习机会,设计富有启发性的开放式问题。
在本节课的教学设计,注重学生能够在自主探究、合作学习的过程中,掌握利用二次函数的极值解题,使学生在愉快的情境中学习这种常用的数学模型,能够注意总结、体会,形成良好的学习习惯。二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实际问题,总体来说,大部分同学掌握较好,个别同学计算不很熟练,有待于进一步的巩固训练。
教学实践证明,精心创设各种教学情境,能够激发学生的学习动机和好奇心,培养学生的求知欲望,调动学生学习的积极性和主动性,引导学生形成良好的意识倾向,促使学生主动地参与。 教学中,在教师的主导下,坚持学生是探究的主体,根据教材提供的学习材料,伴随知识的发生、形成、发展全过程进行探究活动,教师着力引导多思考、多探索,让学生学会发现问题、提出问题、分析问题、解决问题以及亲身参与问题的真实活动之中,只有这样,才能使学生亲身品尝到自己发现的乐趣,才能激起他们强烈的求知欲和创造欲。
教学设计
凤城初中  韩桂玲
一、教材分析
?????? 本节课是在学习了二次函数的概念、图像及性质后,对二次函数性质的应用课。主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。
??????? 本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。
按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:
1、知识与技能
??????? 通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2、过程与方法
?通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。
3、情感态度价值观
(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。
二、学情分析
在解决函数的实际问题时,要善于从实际问题的情境中抽象出数学模型,使实际问题转化为数学问题。通过数学方法解决问题。学生刚刚学习了“二次函数的概念、图象及性质”,因此,只要教师能为学生搭建一个有梯次的研究型学习的平台,学生完全有可能由对具体事例的自主分析,建立数学模型,如再经教师巧妙引领,势必会激发学生对学习的兴趣,从而体会学习的快乐。
三、实验研究:
作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:
(一)、利用二次函数解决实际问题的易错点:
①题意不清,信息处理不当。
②选用哪种函数模型解题,判断不清。
③忽视取值范围的确定,忽视图象的正确画法。
④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。
(二)、解决问题的突破点:
①反复读题,理解清楚题意,对模糊的信息要反复比较。
②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。
③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。
④注意检验,养成良好的解题习惯。
因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。
四、教学过程
问题与情境
师生活动
设计意图
一、创设情境引入课题
问题1:用60米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?
?
教师提出问题,教师引导学生先考虑:(1)若矩形的长为10米,它的面积为多少?(2)若矩形的长分别为15米、20米、30米时,它的面积分别为多少?(3)从上两问同学们发现了什么?
关注学生是否发现两个变量, 是否发现矩形的长的取值范围。
学生积极思考,回答问题。
通过矩形面积的探究,激发学生学习兴趣。
二、分析问题解决问题
问题2你能找到篱笆围成的矩形的最大面积吗?
?教师引导学生分析与矩形面积有关的量,参与学生讨论。
学生思考后回答。
解:设矩形的长为x??米,则宽为(30-x)米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为:
y=-x2+30x???(0<x<30)
画出此函数的图象如图
?
?
当x=-30/2×(-1)=15时,
Y有最大值:-302/4×(-1)=225
????答:当矩形的边长都是15米时,小兔的活动范围最大是225平方米。
通过运用函数模型让学生体会数学的实际价值。二次函数在几何方面的应用特别广泛,要注意自变的取值范围的确定同时所画的函数图象只能是抛物线的一部分。让学生在合作学习中共同解决问题,培养学生的合作精神。
三、归纳总结
问题3 由矩形面积问题,你有什么收获?
反思:实际问题中,二次函数的最大值(或最小值)一定在抛物线的顶点取得吗?
?
师生共同归纳:可利用顶点坐标求实际问题中的最大值(或最小值)。利用函数的极值,解决实际问题,本节课所用的方法是配方法、图象法.
所用的思想方法:从特殊到一般的思想方法.
?
引导学生反思,得出答案:“不一定.要注意自变量的取值范围.”
养成良好的学习习惯。
四、运用新知拓展练习
问题4: 青岛2007中考题
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
教师展示问题,学生分组讨论,如何利用函数模型解决问题。
师生板书解:⑴ y=(x-50)× w
=(x-50) × (-2x+240)
=-2x2+340x-12000,
∴y与x的关系式为:y=-2x2+340x-12000.?
⑵ y=-2x2+340x-12000
=-2 (x-85)?2+2450,
∴当x=85时,y的值最大.?????????????????′
⑶ 当y=2250时,可得方程 -2 (x-85 )2?+2450=2250.
解这个方程,得??x1=75,x2=95.???????????
根据题意,x2=95不合题意应舍去.
∴当销售单价为75元时,可获得销售利润2250元.
?
通过层层设问,引导学生不断思考,积极探索。让学生感受到数学的应用价值。
五、课堂反馈
1、已知直角三角形两直角边的和等于8,两直角边各为多少时,这个直角三角形的面积最大,最大面积是多少?
?
学生自主分析:先求出面积与直角边之间的函数关系,在利用二次函数的顶点坐标求出面积的最大值.
?
解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.∴S= x·(8-x)(0配方得??S=- (x2-8x)
?????????=- (x-4)2+8
此函数的图象如图26-1-11.
∴当x=4时,S最大=8.
及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.
教师注意学生图象的画法,学生能结合图象找出最大值.
?
六、课堂小结布置作业
1、归纳小结
2、作业;习题26.1 第9、10题
教师引导学生谈本节课的收获,学生积极思考,发表自己的见解。
总结归纳学习内容,培养全面分析问题的好习惯。培养学生归纳问题的能力。
实验反思:新课程理念下开放式教学,是根据学生个性发展的需求而进行的教学,为使课堂充满生趣,充满孜孜不倦的探索。要掌握学生课堂参与度的因素:
1、提供学生积极、主动、参与学习活动的机会。
2、使课堂充满求知欲(问题意识)和表现欲(参与意识),好奇求知的欢乐和自我表现的愿望是推动课堂教学发展的永恒内在动力。??
3、营造充满情趣的学习情境,宽松平等民主的人际环境,创设有利于体验成功、承受挫折的学习机会,设计富有启发性的开放式问题。
在本节课的教学设计,注重学生能够在自主探究、合作学习的过程中,掌握利用二次函数的极值解题,使学生在愉快的情境中学习这种常用的数学模型,能够注意总结、体会,形成良好的学习习惯。
教学实践证明,精心创设各种教学情境,能够激发学生的学习动机和好奇心,培养学生的求知欲望,调动学生学习的积极性和主动性,引导学生形成良好的意识倾向,促使学生主动地参与。 教学中,在教师的主导下,坚持学生是探究的主体,根据教材提供的学习材料,伴随知识的发生、形成、发展全过程进行探究活动,教师着力引导多思考、多探索,让学生学会发现问题、提出问题、分析问题、解决问题以及亲身参与问题的真实活动之中,只有这样,才能使学生亲身品尝到自己发现的乐趣,才能激起他们强烈的求知欲和创造欲。
构建二次函数问题解决最值问题教材分析
凤城初中 韩桂玲
?本节课是在学习了二次函数的概念、图像及性质后,对二次函数性质的应用课。主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。
本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。
按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:
1、知识与技能
通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2、过程与方法
?通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。
3、情感态度价值观
(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
(2)在知识教学中体会数学知识的应用价值。
本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。

课题:构建二次函数思想解决最值问题
主讲人:韩桂玲
时间:2015年4月21日星期四
一、 自评
首先创设问题情境,激发学生的学习兴趣。数学课程的内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、验证、推理与交流。而20世纪下半叶数学的一个最大进展是它的广泛应用,数学的价值观因此发生了深刻的变化。最直接的一个结论就是数学教育要重视应用意识和应用能力的培养。“数学应用意识的孕育”“数学建模能力的培养”“联系学生的日常生活并解决相关的问题”等方面的要求越来越处于突出的地位。所以我以养鸡场问题、商品销售利润问题为例,提出问题,引起学生的兴趣,同时也让学生切实体会到数学来源于生活。针对学生基础比较薄弱,解题能力较差的现状,我紧接着先给出几道关于二次函数的练习题,巩固二次函数最值的求法,为后面解决实际问题扫清障碍。
接下来就是解决最开始提出的商品何时利润最大问题,在解决商品利润问题时我先让学生做了几道关于利润的计算题,回忆一下有关利润的公式。
由于有了前面例子的认知基础,因此引导学生考虑能否利用二次函数的知识来解决,这时学生能想到要列出函数关系式。由于获得最大利润的方式有很两种,因此采用小组合作探究的方式分组讨论实施。这是为了给学生提供充分从事数学活动的机会,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。由于学生的基础比较薄弱,因此教师作为引导者与合作者参与到学生的讨论中。这里要给学生充分的时间进行探究。在各小组充分讨论后进行全班交流,归纳出全班哪种办法求解起来最简便,作出优劣的判断。接着由所得到的结论继续提出新问题,再次体会数学来源于生活又服务于生活。
最后是归纳总结、加深印象环节。在小结中,引导学生总结出从数学的角度解决实际问题的过程:有实际问题抽象转化成数学问题,然后运用所学的数学知识得到问题的解,再由结论反过来解释或解决新的实际问题。
最后是课堂测评。
对于作业的处理,针对学生的实际情况,作业分为必做题与选做题。对于基础比较薄弱的学生只需完成课堂中的巩固练习即可;对于学有余力的学生补充两道选做题。
以上就是我对本节课的设计。提出的问题都是学生亲身的经历的情境,学生能感受到数学来源于生活,又服务于生活。而且新课标也提出为学生提供的素材应该具有现实性和趣味性,要密切联系生活实际,让学生体会到数学在生活中的作用
由于课堂时间只有四十分钟,所以感觉时间特别紧,通过学生作业反馈,大部分同学掌握比较好,有三位同学两道题没想到要分类讨论,有两位同学计算出现错误。一节课难免会出现不尽人意的地方,希望各位老师给与批评指正。谢谢!
二、 评课
维度一:课程
教学观察人:李胜翠
观察内容:课程中的课程目标与内容
观察总结:
本节课的教学内容为: 1、准确熟练掌握二次函数的顶点坐标。
2、熟练运用二次函数的知识解决有关最值求解的实际问题.
3、培养学生的建模思想、数形结合和一题多解思想
通过本节课的学习,学生明确如何如何利用二次函数模型解决实际问题;使学生养成探究、分析的学习习惯,提高数学应变能力,树立建模思想、数形结合和一题多解的数学思想方法;
教学预设方面:由于初四五班学生的程度相对好,结合课程标准,本节课教师预设的教学内容多,题量大,题型多。
内容的展示上:教师紧扣定义,按照一切从实际出发的原则,通过对基本关系的推导,注重了学生对基本概念学习的良好习惯。教师对问题进行了归纳,分为4个题型,减轻了学生学习的负担,符合学生认知层次,体现了一切从学生实际出发的教学原则。同时,教师在教学过程中也很好地展示了因材施教的教学原则,如在教学预设中准备了4个题型,但是在教学过程中,为了让学生能充分地展示学生的思维形成过程与思维的多样性,教师能够依教学实际及时地将第四类问题舍去,教学效果好。
课堂观察记录人:宋洁
指标1:方法
预设的教学方法:本节课解题方法灵活,同时提高了解题能力,思维更加敏捷,达到了活用的目的。(这是本节课的重、难点,同时也是最精彩的一部分)
预设的教学方法体现本学科的特点:本节课的设计注重了建模思想、数形结合和一题多解的数学思想
指标2:资源
本节课预设了多媒体课件及相关练习题。
预设多媒体的出发点在于:多媒体的应用不仅节约时间,容量大,更主要的在于能够通过多媒体的动态演示,使学生容易发现图形中蕴含的更多内容,从而比较容易总结出公式,另一方面,也能够提高学生学习的兴趣和学习积极性。相关练习的设计从易到难,有梯度,有层次,不仅能够检验学生的认知情况,也能为学有余力的学生提供了学习的方向,效果好。

评测练习
凤城初中 韩桂玲
1. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为元,每个月的销售量为件.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)设每月的销售利润为,请直接写出与的函数关系式;
(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元
2.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?
3.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加元.求:
(1)房间每天的入住量(间)关于(元)的函数关系式.
(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.
(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?
5.旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为15000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数在30人或30人以下,飞机票每张收费900元;若旅游团的人数多于30人,则给与优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有75人,那么旅游团的人数为多少时,旅行社可获得的利润最大?
6、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。
7、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
8、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
9、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个。考虑了所有因素后该零售店每个面包的成本是5角。设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)。
⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
⑵求y与x之间的函数关系式;
⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?
10、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?
11、某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少?
12、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?
13、为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
14、某商店经营一批进价为10元的商品,据市场分析,每件售价15元,则一天可售55件,如果售价每降1元,则日销售量可增加3件,(为了方便结账,定价取整数)设销售单价为x元,日销售量为y件,日获利为w元。
解答下列问题:
试写出y与x之间的函数关系式;
试写出w与x之间的函数关系式;
计算单价为12元时的日销售量和日销售利润;
若使日销售利润达到200元,且老板要尽快减少库存,则售价应定为多少元?
定价为多少元时,日获利最多,为多少?
分别写出本题中w与x的取值范围。
课件19张PPT。构建二次函数模型

解决最值问题凤城初中 韩桂玲 学习目标
1、准确熟练掌握二次函数的顶点坐标。
2、熟练运用二次函数的知识解决有关最值求解的实际问题.
3、培养学生的建模思想、数形结合和一题多解思想。
1、二次函数y=ax2+bx+c(a≠0)何时有最大值或最小值?
温故知新:a>0a<02、二次函数y=a(x-h)2+ k(a≠0)何时有最大值或最小值?
a>0,当x=h时,最小值为k;
a<0,当x=h时,最大值为k;给你长6m的铝合金条,请问:
①你能用它制成一矩形窗框吗?
②怎样设计,窗框的透光面积最大?问题1:x3-x(0<x<3)解:设宽为x米,根据题意得,则长为(3-x)米当宽为1.5米时,窗框透光面积为9/4平方米。解决面积问题,一般的步骤为:①把问题归结为二次函数问题(设自变量和函数);③在自变量的取值范围内求出最值;
(数形结合找最值)②求出函数解析式(包括自变量的取值范围);④答。数学建模用长为6m的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?口答:只说算式,不解答(贵阳中考)某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;
(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是 元;这种篮球每月的销售量是
__________个。(用含x的代数式表示)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?问题2:(10+x)(500-10x)思路分析:这是二次函数的性质在实际问题中的应用.
利润=售价-进价
总利润=每件利润 ×总数量
=总销售额-总进价解: (2)设月销售利润为y元 ,由题意得:y=(10+x)(500-10x),
整理得:y=-10(x-20)2+9000 ,
当x=20时,有最大值9000 ,
20+50=70 (元).
答:8000元不是最大利润,最大利润是9000元,此时篮球售价为70元.实际问题抽象转化数学问题运用二次函数问题的解返回解释检验 如图是某公园一圆形喷水池,水流在各方向沿形
状相同的抛物线落下。建立如图所示的坐标系,如果喷头所在
处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线
的表达式为 。如果不考虑其他因素,那么水池的半径至少要____米,才能使喷出的水流不致落到池外。y= -(x-1)2 +2.252.5问题3:1.有一个抛物线形的立交桥拱,这个桥拱的最大高度为16米,跨度为40米。若在离跨度中心M点5米处垂直竖立一铁柱支撑拱顶,这铁柱应取多长?(0,16)(20,0)挑战自我!(0,0)(20,16)解决抛物线形问题:
1、建立适当的坐标系
2、准确找出图中有关信息
3、灵活设出二次函数关系式
4、求出关系式
5、得出相应问题的答案D小试牛刀!你准备好了吗?何时获得最大利润? 2、某商店购进一批单价为20元的日用品,如果以单
价30元销售,那么半个月内可以售出400件。根据销
售经验,提高销售单价会导致销售量的减少,即销售
单价每提高1元,销售量相应减少20件。如何提高售
价,才能在半个月内获得最大利润?小结:
你有哪些收获?实际问题抽象转化数学问题运用二次函数问题的解返回解释检验学了今天的内容,我们意识到所学的数学是有用的,巧妙地应用数学知识可以解决生活中碰到的很多问题!收获:数学的用处还是很大的,
生活中处处有数学,
就看我们怎么用它了……再见实际问题与二次函数教学反思
凤城初中 韩桂玲
二次是函数是函数中的重点、难点,它比较复杂,一般来说我们研究它是先研究其本身性质、图象,进而扩展到应用,它在现实中应用较广,我们在教学中要紧密结合实际,让学生学有所用,在教学中应注意以下几个问题:
(一)把握好课标。九年义务教育初中数学教学大纲却降低了对二次函数的教学要求,只要求学生理解二次函数和抛物线的有关概念,会用描点法画出二次函数的图像;会用配方法确定抛物线的顶点和对称轴;会用待定系数法由已知图像上三点的坐标求二次函数的解析式。
(二)把实际问题数学化。首先要深入了解实际问题的背景,了解影响问题变化的主要因素,然后在舍弃问题中的非本质因素的基础上,应用有关知识把实际问题抽象成为数学问题,并进而解决它。
(三)函数的教学应注意自变量与函数之间的变化对应。函数问题是一个研究动态变化的问题,让学生理解动态变化中自变量与函数之间的变化对应,可能更有助于学生对函数的学习。
(四)二次函数的教学应注意数形结合。要把函数关系式与其图像结合起来学习,让学生感受到数和形结合分析解决问题的优势。
(五)建立二次函数模型。利用二次函数来解决实际问题,重在建立二次函数模型。但是在解决最值问题时得注意,有时理论上的最大值(或最小值)不是实际生活中的最值,得考虑实际意义。
(六)注重二次函数与一元二次方程、一元二次不等式的关系。利用二次函数的图像可以得到对应一元二次方程的解、一元二次不等式的解集。
从学生的展示看,效果不太理想,有的学生能正确的建立坐标系却不能正确的写出解析式,有的是建立坐标系后单位长度习惯性的取1、2、3等等,有的是坐标系、解析式都对,代入求值时出错,有的是坐标的顺序写反了等等。错误较多。
下课后,我开始反思我的课堂,这节课不是太难理解,知识也比较单一,为什么学生出错那么多?究其原因:前面学的旧知识忘了造成了坐标的写反;对知识的定势,造成了单位长度标识的时候出错;计算的不认真导致了写错解析式,代入求值时出错等。实际上,作为老师应该预见到自己学生的一些出错倾向,比如计算的错误,应该不断的给予提醒。单位长度标识的错误提醒我,应该让学生很清晰的意识的坐标系单位长度是根据需要标注的,具体情况具体对待,不同的问题标注是不相同的。像今天这节课,我觉得应该带领同学们板书一下过程,学生的出错可能会少一点。
本节课我有一个收获,学生思维的活跃让我兴奋。我认识到:只要你相信学生,他就能给你创造奇迹。
构建二次函数模型解决最值问题课标分析
凤城初中 韩桂玲
《构建二次函数问题解决最值问题》是九年级上册第二次函数的应用。我今天主要从以下几个方面对本节课的设计进行阐述。
一、教学内容的分析
(一)地位与作用:
二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题。而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,面积问题与最大利润学生易于理解和接受,故而在这儿作专题讲座。目的在于让学生通过掌握求面积、利润最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积、利润最大、运动中的二次函数、综合应用三课时,本节是第一课时。
(二)学情及学法分析
对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定
对于函数知识来说它是从生活中广泛的实际问题中抽象出来的数学知识,所以它是解决实际问题中被广泛应用的工具。这部分知识的学习无论对提高学生在生活中应用函数知识的意识,还是对掌握运用函数知识的方法,都具有重要意义。
而二次函数的知识是九年级数学学习的重要内容之一。同样它也是从生活实际问题中抽象出的知识,又是在解决实际问题时广泛应用的数学工具。课程标准强调学生的应用意识的培养,让学生面对实际问题时,能尝试着从数学的角度运用所学知识和方法寻求解决问题的策略。
本节课是学生在学习了二次函数的概念、图像和性质后进一步学习二次函数的应用。学生有了一定的二次函数的知识,并且在前两节课已经接触到运用二次函数的知识解决函数的最值问题,而本节课需要利用建模的思想,将实际问题转化为二次函数的问题,从而使问题得到解决。建立二次函数关系对学生而言比较困难,尤其是关注实际问题中自变量的取值范围,需要学生经历分析、讨论、对比等过程,进而得出结论。本节课的问题均来自学生的日常生活,学生会感到很有兴趣,愿意去探究。但学生基础比较薄弱,对学习数学还是有一些畏难的情绪,因此需要教师进行适当引导、分散难点。
根据上述教学背景分析,特制订如下教学目标:
1.知识与技能:学会将实际问转化为数学问题;学会用二次函数的知识解决有关的实际问题.
2.过程与方法:经历“实际问题转化成数学问题——利用二次函数知识解决问题——利用求解的结果解释问题”的过程体会数学建模的思想,体会到数学来源于生活,又服务于生活。
3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。
利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题,就是本节课的教学重点;由于学生理解问题的能力和知识储备情况的不同,那么“从现实问题中建立二次函数模型。”就是本节课的一个难点。
新课程标准强调动手实践、自主探索与合作交流应该是学生学习数学的重要方式。教师应该是学生数学学习的组织者、引导者、合作者。同时,我认为教学方法与学习方法应该是相辅相成的不应该是割裂开来的,而且在一节课中教学方法和学习方法不可能是单一的而是多种方式方法并存的,因此根据本节课的内容和学生的实际情况,同时也为了突出本节课的重点并突破学习难点我确定本节课的教法与学法有启发法、探究法、试验法、课堂讨论法、练习法等。