登陆21世纪教育 助您教考全无忧
1教学目标
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
2学情分析
这是高中数学的第一节课。首先初中和高中学生的心理是不一样的,学生还没有适应高中的学习,起步要慢,尽可能及一些让学生容易接受的例子。虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。本节课要记的东西多,可让学生自己阅读,然后再老师的引导下思考问题,进一步解决问题。
3重点难点
重点:集合的含义与表示方法
难点:表示方法的恰当选择
4教学过程
4.1 第一学时
教学活动
活动1【导入】温故链接,导引自学
1.教师首先提出:我先自我介绍,而后请部分同学自我介绍一下.(引导学生举例和互相交流,与此同时,教师对学生的活动给予评价)
2.接着教师指出:在介绍的过程中,同学们都不约而同地提及“家庭”、“学校”、“班级”、“男生”、“女生”等词语,这些所涉及的范围与“学生×××”相比,它们有什么区别,又有什么联系呢?
3.教师提出问题:那么,集合的含义是什么?这就是我们这一堂课所要学习的内容
活动2【讲授】交流质疑,精讲点拨
1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;
(2)我国古代的四大发明;(3)所有的安理会常任理事国;
(4)所有的正方形;(5)浙江省在2011年之前建成的立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)方程x2—5x+6=0的所有实数根;
(8)不等式x—3>0的所有解;(9)实验中学2010年9月入学的高一学生的全体2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出一位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义。(一般地,指定的某些对象的全体称为集合,简称集。集合中的每个对象叫做这个集合的元素)4.教师指出,集合常用大写字母A,B,C,D……表示,元素常用小写字母a,b,c,d……表示
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生问题,使学生明确集合元素的三大特性,即:确定性,互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。2.教师组织引导学生思考以下问题:判断一下元素的全体是否组成集合,并说明理由:
(1)高一(6)班的学生
(2)高一(6)班高个子的男生
(3)高一(6)班的女生
(4)高一(6)班喜欢数学的学生(让学生充分发表自己的见解)3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动及时的评价。4.教师提出问题,让学生思考如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b表示高一4班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于(如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a A)。
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相关内容,写出常用数集的符号。6.教师引导学生阅读教材中的相关内容,并思考,讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?(使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象)
7.例题1:用适当的方法表示下列集合:
(1)中国的直辖市
(2)国旗的颜色
(3)方程x2 2x 3=0的解集
(4)不等式2x+1>0的解集
(5)方程x2 2x+1=0的解集
(6)方程x2 2x+3=0的解集
再次总结集合的表示方法,列举法和描述法适用的对象和特点。同时解决集合的分类问题
8.例题2:完成下列各题:
(1)若集合A={ x|ax+1=0}= ,求实数a的值.
(2)若-3∈{ a-3,2a-1,a2-4},求实数a.
小结:元素和集合之间的关系。
活动3【练习】当堂反馈,拓展迁移
1.已知集合A={x|x≤3√2,x∈R},a=√15,b=2√3 ,则实数a,b
与集合A的关系为
2.用适当的方法表示下列集合:
(1){(x,y)|2x+3y=12,x、y∈N}
(2){y|y=-x2-2x+10,x∈Z,y∈N}
(3){x∈Z|4x+3∈Z}
(4)使y=1x2+x 6有意义的实数x.
3.用列举法表示下列集合
(1){x|x+1=0}
(2){x|x为15的正约数}
(3){x|x为不大于10的正偶数}
(4){(x,y)|x+y=2且x-2y=4}
(5){(x,y)|x∈{1,2},y∈{1,3}}
(6){(x,y)|3x+2y=16,x∈N,y∈N}
4.用描述法表示下列集合:
(1)奇数的集合;(2)正偶数的集合.
.
1教学目标
了解关于天才的话题。
明确天才出现的原因。
2学情分析3重点难点4教学过程
4.1 第一学时教学目标
学时重点
学时难点教学活动
4.2 第二学时教学目标
学时重点
学时难点教学活动
4.3 第三学时教学目标
学时重点
学时难点教学活动
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品资料·第 1 页 (共 3 页) 版权所有@21世纪教育网