9 弧长及扇形的面积
基础达标练课时训练 夯实基础
知识点1 弧长公式及应用
1.(2023·张家界中考)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于 ( )
A.π B.3π C.2π D.2π-
2.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24 cm,若∠ACB=60°,则劣弧AB的长是 ( )
A.8π cm B.16π cm
C.32π cm D.192π cm
3.(2023·温州中考)若扇形的圆心角为40°,半径为18,则它的弧长为 .
4.(2023·吉林中考)如图①,A,B表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O是圆心,半径r为15 m,点A,B是圆上的两点,圆心角∠AOB=120°,则的长为 m.(结果保留π)
知识点2 扇形的面积公式及应用
5.如图,在☉O中,若∠ACB=30°,OA=6,则扇形OAB(阴影部分)的面积是 ( )
A.12π B.6π C.4π D.2π
6.(2023·广安中考)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是 ( )
A.π-2 B.2π-2 C.2π-4 D.4π-4
7.(2022·毕节中考)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45 cm,扇面BD的长为30 cm,则扇面的面积是 ( )
A.375π cm2 B.450π cm2
C.600π cm2 D.750π cm2
8.(2023·永州中考)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为 度.
9.(2023·重庆中考B卷)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE,DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 (结果保留π).
综合能力练巩固提升 迁移运用
10.(2023·荆州中考)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300 m,BD=150 m,则的长为 ( )
A.300π m B.200π m
C.150π m D.100π m
11.(2022·铜仁中考)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是 ( )
A.9 B.6 C.3 D.12
12.如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB'C',连接B'C并延长交AB于点D,当B'D⊥AB时,的长是( )
A.π B.π
C.π D.π
13.(2023·长沙中考)毛主席在《七律二首·送瘟神》中写道“坐地日行八万里,巡天遥看一千河”,我们把地球赤道看成一个圆,这个圆的周长大约为“八万里”.对宇宙千百年来的探索与追问,是中华民族矢志不渝的航天梦想.从古代诗人屈原发出的《天问》,到如今我国首次火星探测任务被命名为“天问一号”,太空探索无止境,伟大梦想不止步.2021年5月15日,我国成功实现火星着陆.科学家已经探明火星的半径大约是地球半径的,若把经过火星球心的截面看成是圆形的,则该圆的周长大约为 万里.
14.(2023·郴州中考)如图,在☉O中,AB是直径,点C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.
(1)求证:直线CD是☉O的切线;
(2)若∠ACD=120°,CD=2,求图中阴影部分的面积(结果用含π的式子表示).
【易错必究 规避陷阱】
易错点 忽视条件“两面贴纸”
【案例】如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25 cm,贴纸部分的宽BD为15 cm,若纸扇两面贴纸,则贴纸的面积为 .(结果保留π) 9 弧长及扇形的面积
基础达标练课时训练 夯实基础
知识点1 弧长公式及应用
1.(2023·张家界中考)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于 (B)
A.π B.3π C.2π D.2π-
2.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24 cm,若∠ACB=60°,则劣弧AB的长是 (B)
A.8π cm B.16π cm
C.32π cm D.192π cm
3.(2023·温州中考)若扇形的圆心角为40°,半径为18,则它的弧长为 4π .
4.(2023·吉林中考)如图①,A,B表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O是圆心,半径r为15 m,点A,B是圆上的两点,圆心角∠AOB=120°,则的长为 10π m.(结果保留π)
知识点2 扇形的面积公式及应用
5.如图,在☉O中,若∠ACB=30°,OA=6,则扇形OAB(阴影部分)的面积是 (B)
A.12π B.6π C.4π D.2π
6.(2023·广安中考)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是 (C)
A.π-2 B.2π-2 C.2π-4 D.4π-4
7.(2022·毕节中考)如图,一件扇形艺术品完全打开后,AB,AC夹角为120°,AB的长为45 cm,扇面BD的长为30 cm,则扇面的面积是 (C)
A.375π cm2 B.450π cm2
C.600π cm2 D.750π cm2
8.(2023·永州中考)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为 60 度.
9.(2023·重庆中考B卷)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE,DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 4-π (结果保留π).
综合能力练巩固提升 迁移运用
10.(2023·荆州中考)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300 m,BD=150 m,则的长为 (B)
A.300π m B.200π m
C.150π m D.100π m
11.(2022·铜仁中考)如图,在边长为6的正方形ABCD中,以BC为直径画半圆,则阴影部分的面积是 (A)
A.9 B.6 C.3 D.12
12.如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB'C',连接B'C并延长交AB于点D,当B'D⊥AB时,的长是(B)
A.π B.π
C.π D.π
13.(2023·长沙中考)毛主席在《七律二首·送瘟神》中写道“坐地日行八万里,巡天遥看一千河”,我们把地球赤道看成一个圆,这个圆的周长大约为“八万里”.对宇宙千百年来的探索与追问,是中华民族矢志不渝的航天梦想.从古代诗人屈原发出的《天问》,到如今我国首次火星探测任务被命名为“天问一号”,太空探索无止境,伟大梦想不止步.2021年5月15日,我国成功实现火星着陆.科学家已经探明火星的半径大约是地球半径的,若把经过火星球心的截面看成是圆形的,则该圆的周长大约为 4 万里.
14.(2023·郴州中考)如图,在☉O中,AB是直径,点C是圆上一点.在AB的延长线上取一点D,连接CD,使∠BCD=∠A.
(1)求证:直线CD是☉O的切线;
(2)若∠ACD=120°,CD=2,求图中阴影部分的面积(结果用含π的式子表示).
【解析】(1)连接OC,
∵AB是直径,
∴∠ACB=∠OCA+∠OCB=90°,
∵OA=OC,∠BCD=∠A,
∴∠OCA=∠A=∠BCD,
∴∠BCD+∠OCB=∠OCD=90°,
∴OC⊥CD,∵OC是☉O的半径,∴直线CD是☉O的切线.
(2)见全解全析
【易错必究 规避陷阱】
易错点 忽视条件“两面贴纸”
【案例】如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25 cm,贴纸部分的宽BD为15 cm,若纸扇两面贴纸,则贴纸的面积为 350π cm2 .(结果保留π)
周末小练 适时巩固 请完成
“周周测(二十)”