中小学教育资源及组卷应用平台
专题15 化学反应原理综合题
1. (2024·广东卷)酸在多种反应中具有广泛应用,其性能通常与酸的强度密切相关。
(1)酸催化下与混合溶液的反应(反应a),可用于石油开采中油路解堵。
①基态N原子价层电子的轨道表示式为_______。
②反应a:
已知:
则反应a的_______。
③某小组研究了3种酸对反应a的催化作用。在相同条件下,向反应体系中滴加等物质的量的少量酸,测得体系的温度T随时间t的变化如图。
据图可知,在该过程中_______。
A.催化剂酸性增强,可增大反应焓变
B.催化剂酸性增强,有利于提高反应速率
C.催化剂分子中含H越多,越有利于加速反应
D.反应速率并不始终随着反应物浓度下降而减小
(2)在非水溶剂中,将转化为化合物ⅱ(一种重要的电子化学品)的催化机理示意图如图,其中的催化剂有_______和_______。
(3)在非水溶剂中研究弱酸的电离平衡具有重要科学价值。一定温度下,某研究组通过分光光度法测定了两种一元弱酸(X为A或B)在某非水溶剂中的。
a.选择合适的指示剂其钾盐为,;其钾盐为。
b.向溶液中加入,发生反应:。起始的物质的量为,加入的物质的量为,平衡时,测得随的变化曲线如图。
已知:该溶剂本身不电离,钾盐在该溶剂中完全电离。
①计算_______。(写出计算过程,结果保留两位有效数字)
②在该溶剂中,_______;_______。(填“>”“<”或“=”)
2.(2024·北京卷) 是一种重要的工业原料。可采用不同的氮源制备。
(1)方法一:早期以硝石(含)为氮源制备,反应的化学方程式为:。该反应利用了浓硫酸的性质是酸性和_________。
(2)方法二:以为氮源催化氧化制备,反应原理分三步进行。
①第I步反应的化学方程式为___________________________。
②针对第Ⅱ步反应进行研究:在容积可变的密闭容器中,充入和进行反应。在不同压强下(、),反应达到平衡时,测得转化率随温度的变化如图所示。解释y点的容器容积小于x点的容器容积的原因_________________________________________________________。
(3)方法三:研究表明可以用电解法以为氨源直接制备,其原理示意图如下。
①电极a表面生成的电极反应式:__________________。
②研究发现:转化可能的途径为。电极a表面还发生iii.。iii的存在,有利于途径ii,原因是________________________________________________。
(4)人工固氮是高能耗的过程,结合分子结构解释原因___________________________。方法三为的直接利用提供了一种新的思路。
3. (2024·甘肃卷)是制备半导体材料硅的重要原料,可由不同途径制备。
(1)由制备:
已知
时,由制备硅_______(填“吸”或“放”)热_______。升高温度有利于制备硅的原因是_______。
(2)在催化剂作用下由粗硅制备:。,密闭容器中,经不同方式处理的粗硅和催化剂混合物与和气体反应,转化率随时间的变化如下图所示:
①,经方式_______处理后的反应速率最快;在此期间,经方式丙处理后的平均反应速率_______。
②当反应达平衡时,的浓度为_______,平衡常数K的计算式为_______。
③增大容器体积,反应平衡向_______移动。
4. (2024·湖南卷)丙烯腈()是一种重要的化工原料。工业上以为载气,用作催化剂生产的流程如下:
已知:①进料混合气进入两釜的流量恒定,两釜中反应温度恒定:
②反应釜Ⅰ中发生的反应:
ⅰ:
③反应釜Ⅱ中发生的反应:
ⅱ:
ⅲ:
④在此生产条件下,酯类物质可能发生水解。
回答下列问题:
(1)总反应 _______(用含、、和的代数式表示);
(2)进料混合气中,出料中四种物质(、、、)的流量,(单位时间内出料口流出的物质的量)随时间变化关系如图:
①表示的曲线是_______(填“a”“b”或“c”);
②反应釜Ⅰ中加入的作用是_______。
③出料中没有检测到的原因是_______。
④反应后,a、b、c曲线对应物质的流量逐渐降低的原因是_______。
(3)催化剂再生时会释放,可用氨水吸收获得。现将一定量的固体(含水)置于密闭真空容器中,充入和,其中的分压为,在℃下进行干燥。为保证不分解,的分压应不低于_______(已知 分解的平衡常数);
(4)以为原料,稀硫酸为电解液,Sn作阴极,用电解的方法可制得,其阴极反应式_______。
5. (2024·浙江卷6月)氢是清洁能源,硼氢化钠()是一种环境友好的固体储氢材料,其水解生氢反应方程式如下:(除非特别说明,本题中反应条件均为,)
请回答:
(1)该反应能自发进行的条件是_______。
A. 高温 B. 低温 C. 任意温度 D. 无法判断
(2)该反应比较缓慢。忽略体积变化的影响,下列措施中可加快反应速率的是_______。
A. 升高溶液温度 B. 加入少量异丙胺
C. 加入少量固体硼酸 D. 增大体系压强
(3)为加速水解,某研究小组开发了一种水溶性催化剂,当该催化剂足量、浓度一定且活性不变时,测得反应开始时生氢速率v与投料比之间的关系,结果如图1所示。请解释ab段变化的原因_______。
(4)氢能的高效利用途径之一是在燃料电池中产生电能。某研究小组的自制熔融碳酸盐燃料电池工作原理如图2所示,正极上的电极反应式是_______。该电池以恒定电流工作14分钟,消耗体积为,故可测得该电池将化学能转化为电能的转化率为_______。[已知:该条件下的摩尔体积为;电荷量电流时间;;。]
(5)资源的再利用和再循环有利于人类的可持续发展。选用如下方程式,可以设计能自发进行的多种制备方法,将反应副产物偏硼酸钠()再生为。(已知:是反应的自由能变化量,其计算方法也遵循盖斯定律,可类比计算方法;当时,反应能自发进行。)
I.
II.
III.
请书写一个方程式表示再生为的一种制备方法,并注明_______。(要求:反应物不超过三种物质;氢原子利用率为。)
6. (2024·江苏卷)氢能是理想清洁能源,氢能产业链由制氢、储氢和用氢组成。
(1)利用铁及其氧化物循环制氢,原理如图所示。反应器Ⅰ中化合价发生改变的元素有_______;含CO和各1mol的混合气体通过该方法制氢,理论上可获得_______。
(2)一定条件下,将氮气和氢气按混合匀速通入合成塔,发生反应。海绵状的作催化剂,多孔作为的“骨架”和气体吸附剂。
①中含有CO会使催化剂中毒。和氨水的混合溶液能吸收CO生成溶液,该反应的化学方程式为_______。
②含量与表面积、出口处氨含量关系如图所示。含量大于,出口处氨含量下降的原因是_______。
(3)反应可用于储氢。
①密闭容器中,其他条件不变,向含有催化剂的溶液中通入,产率随温度变化如图所示。温度高于,产率下降的可能原因是_______。
②使用含氨基物质(化学式为,CN是一种碳衍生材料)联合催化剂储氢,可能机理如图所示。氨基能将控制在催化剂表面,其原理是_______;用重氢气(D2)代替H2,通过检测是否存在_______(填化学式)确认反应过程中的加氢方式。
7. (2024·河北卷)氯气是一种重要的基础化工原料,广泛应用于含氯化工产品的生产。硫酰氯及1,4-二(氯甲基)苯等可通过氯化反应制备。
(1)硫酰氯常用作氯化剂和氯磺化剂,工业上制备原理如下:。
①若正反应活化能为,则逆反应的活化能_______(用含正的代数式表示)。
②恒容密闭容器中按不同进料比充入和其,测定温度下体系达平衡时的(为体系初始压强,,P为体系平衡压强),结果如图。
上图中温度由高到低的顺序为_______,判断依据为_______。M点的转化率为_______,温度下用分压表示的平衡常数_______。
③下图曲线中能准确表示温度下随进料比变化的是_______(填序号)。
(2)1,4-二(氯甲基)苯(D)是有机合成中的重要中间体,可由对二甲苯(X)的氯化反应合成。对二甲苯浅度氯化时反应过程为
以上各反应的速率方程均可表示为,其中分别为各反应中对应反应物的浓度,k为速率常数(分别对应反应①~⑤)。某温度下,反应器中加入一定量的X,保持体系中氯气浓度恒定(反应体系体积变化忽略不计),测定不同时刻相关物质的浓度。已知该温度下,。
①时,,且内,反应进行到时,_______。
②时,,若产物T的含量可忽略不计,则此时_______后,随T的含量增加,_______(填“增大”“减小”或“不变”)。
8. (2024·山东卷)水煤气是的主要来源,研究对体系制的影响,涉及主要反应如下:
回答列问题:
(1)的焓变_______(用代数式表示)。
(2)压力p下,体系达平衡后,图示温度范围内已完全反应,在温度时完全分解。气相中,和摩尔分数随温度的变化关系如图所示,则a线对应物种为_______(填化学式)。当温度高于时,随温度升高c线对应物种摩尔分数逐渐降低的原因是_______。
(3)压力p下、温度为时,图示三种气体的摩尔分数分别为0.50,0.15,0.05,则反应的平衡常数_______;此时气体总物质的量为,则的物质的量为_______;若向平衡体系中通入少量,重新达平衡后,分压将_______(填“增大”“减小”或“不变”),将_______(填“增大”“减小”或“不变”)。
9. (2024·新课标卷)Ni(CO)4(四羰合镍,沸点43℃)可用于制备高纯镍,也是有机化合物羰基化反应的催化剂。回答下列问题:
(1)Ni基态原子价电子的轨道表示式为_______。镍的晶胞结构类型与铜的相同,晶胞体积为,镍原子半径为_______。
(2)结构如图甲所示,其中含有σ键数目为_______,晶体的类型为_______。
(3)在总压分别为0.10、0.50、1.0、2.0MPa下,Ni(s)和CO(g)反应达平衡时,体积分数x与温度的关系如图乙所示。反应的ΔH_______0(填“大于”或“小于”)。从热力学角度考虑,_______有利于的生成(写出两点)。、100℃时CO的平衡转化率α=_______,该温度下平衡常数_______。
(4)对于同位素交换反应,20℃时反应物浓度随时间的变化关系为(k为反应速率常数),则反应一半所需时间_______(用k表示)。
10. (2024·全国甲卷)甲烷转化为多碳化合物具有重要意义。一种将甲烷溴化再偶联为丙烯()的研究所获得的部分数据如下。回答下列问题:
(1)已知如下热化学方程式:
计算反应的_____。
(2)与反应生成,部分会进一步溴化。将和。通入密闭容器,平衡时,、与温度的关系见下图(假设反应后的含碳物质只有、和)。
(i)图中的曲线是_____(填“a”或“b”)。
(ii)时,的转化_____,_____。
(iii)时,反应的平衡常数_____。
(3)少量可提高生成的选择性。时,分别在有和无的条件下,将和,通入密闭容器,溴代甲烷的物质的量(n)随时间(t)的变化关系见下图。
(i)在之间,有和无时的生成速率之比_____。
(ii)从图中找出提高了选择性的证据:_____。
(ⅲ)研究表明,参与反应的可能机理如下:
①
②
③
④
⑤
⑥
根据上述机理,分析提高选择性的原因:_____。
11. (2024·湖北卷)用和焦炭为原料,经反应I、Ⅱ得到,再制备乙炔是我国科研人员提出的绿色环保新路线。
反应I:
反应Ⅱ:
回答下列问题:
(1)写出与水反应的化学方程式_______。
(2)已知、(n是的化学计量系数)。反应、Ⅱ的与温度的关系曲线见图1。
①反应在的_______。
②保持不变,假定恒容容器中只发生反应I,达到平衡时_______,若将容器体积压缩到原来的,重新建立平衡后_______。
(3)恒压容器中,焦炭与的物质的量之比为,为载气。和下,产率随时间的关系曲线依实验数据拟合得到图2(不考虑接触面积的影响)。
①初始温度为,缓慢加热至时,实验表明已全部消耗,此时反应体系中含物种为_______。
②下,反应速率的变化特点为_______,其原因是_______。
12. (2024·黑吉辽卷)为实现氯资源循环利用,工业上采用催化氧化法处理废气:。将和分别以不同起始流速通入反应器中,在和下反应,通过检测流出气成分绘制转化率()曲线,如下图所示(较低流速下转化率可近似为平衡转化率)。
回答下列问题:
(1)_______0(填“>”或“<”);_______℃。
(2)结合以下信息,可知的燃烧热_______。
(3)下列措施可提高M点转化率的是_______(填标号)
A. 增大的流速 B. 将温度升高
C. 增大 D. 使用更高效的催化剂
(4)图中较高流速时,小于和,原因是_______。
(5)设N点的转化率为平衡转化率,则该温度下反应的平衡常数_______(用平衡物质的量分数代替平衡浓度计算)
(6)负载在上的催化活性高,稳定性强,和的晶体结构均可用下图表示,二者晶胞体积近似相等,与的密度比为1.66,则的相对原子质量为_______(精确至1)。
13. (2024·浙江卷1月)通过电化学、热化学等方法,将转化为等化学品,是实现“双碳”目标的途径之一。请回答:
(1)某研究小组采用电化学方法将转化为,装置如图。电极B上的电极反应式是_______。
(2)该研究小组改用热化学方法,相关热化学方程式如下:
:
Ⅱ:
Ⅲ:
①_______。
②反应Ⅲ在恒温、恒容的密闭容器中进行,和的投料浓度均为,平衡常数,则的平衡转化率为_______。
③用氨水吸收,得到氨水和甲酸铵的混合溶液,时该混合溶液的_______。[已知:时,电离常数、]
(3)为提高效率,该研究小组参考文献优化热化学方法,在如图密闭装置中充分搅拌催化剂M的(有机溶剂)溶液,和在溶液中反应制备,反应过程中保持和的压强不变,总反应的反应速率为v,反应机理如下列三个基元反应,各反应的活化能(不考虑催化剂活性降低或丧失)。
Ⅳ:
V:
VI:
①催化剂M足量条件下,下列说法正确的是_______。
A.v与的压强无关 B.v与溶液中溶解的浓度无关
C.温度升高,v不一定增大 D.在溶液中加入,可提高转化率
②实验测得:,下,v随催化剂M浓度c变化如图。时,v随c增大而增大:时,v不再显著增大。请解释原因_______。
14. (2024·安徽卷)乙烯是一种用途广泛的有机化工原料。由乙烷制乙烯的研究备受关注。回答下列问题:
【乙烷制乙烯】
(1)氧化脱氢反应:
计算: _______
(2)直接脱氢反应为,的平衡转化率与温度和压强的关系如图所示,则_______0(填“>”“<”或“=”)。结合下图。下列条件中,达到平衡时转化率最接近的是_______(填标号)。
a. b. c.
(3)一定温度和压强下、反应i
反应ⅱ (远大于)(是以平衡物质的量分数代替平衡浓度计算的平衡常数)
①仅发生反应i时。的平衡转化宰为,计算_______。
②同时发生反应i和ⅱ时。与仅发生反应i相比,的平衡产率_______(填“增大”“减小”或“不变”)。
【乙烷和乙烯混合气的分离】
(4)通过修饰的Y分子筛的吸附-脱附。可实现和混合气的分离。的_______与分子的键电子形成配位键,这种配位键强弱介于范德华力和共价键之间。用该分子筛分离和的优点是_______。
(5)常温常压下,将和等体积混合,以一定流速通过某吸附剂。测得两种气体出口浓度(c)与进口浓度()之比随时间变化关系如图所示。下列推断合理的是_______(填标号)。
A.前,两种气体均未被吸附
B.p点对应的时刻,出口气体的主要成分是
C.a-b对应的时间段内,吸附的逐新被替代
15.(2023·全国甲卷)甲烷选择性氧化制备甲醇是一种原子利用率高的方法。回答下列问题:
(1)已知下列反应的热化学方程式:
①
②
反应③的_______,平衡常数_______(用表示)。
(2)电喷雾电离等方法得到的(等)与反应可得。与反应能高选择性地生成甲醇。分别在和下(其他反应条件相同)进行反应,结果如下图所示。图中的曲线是_______(填“a”或“b”。、时的转化率为_______(列出算式)。
(3)分别与反应,体系的能量随反应进程的变化如下图所示(两者历程相似,图中以示例)。
(ⅰ)步骤Ⅰ和Ⅱ中涉及氢原子成键变化的是_______(填“Ⅰ”或“Ⅱ”)。
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则与反应的能量变化应为图中曲线_______(填“c”或“d”)。
(ⅲ)与反应,氘代甲醇的产量_______(填“>”“<”或“=”)。若与反应,生成的氘代甲醇有_______种。
16.(2023·全国乙卷)硫酸亚铁在工农业生产中有许多用途,如可用作农药防治小麦黑穗病,制造磁性氧化铁、铁催化剂等。回答下列问题:
(1)在气氛中,的脱水热分解过程如图所示:
根据上述实验结果,可知_______,_______。
(2)已知下列热化学方程式:
则的_______。
(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。平衡时的关系如下图所示。时,该反应的平衡总压_______、平衡常数_______。随反应温度升高而_______(填“增大”“减小”或“不变”)。
(4)提高温度,上述容器中进一步发生反应(Ⅱ),平衡时_______(用表示)。在时,,则_______,_______(列出计算式)。
17.(2023·新课标卷)氨是最重要的化学品之一,我国目前氨的生产能力位居世界首位。回答下列问题:
(1)根据图1数据计算反应的_______。
(2)研究表明,合成氨反应在催化剂上可能通过图2机理进行(*表示催化剂表面吸附位,表示被吸附于催化剂表面的)。判断上述反应机理中,速率控制步骤(即速率最慢步骤)为_______(填步骤前的标号),理由是_______。
(3)合成氨催化剂前驱体(主要成分为)使用前经还原,生成包裹的。已知属于立方晶系,晶胞参数,密度为,则晶胞中含有的原子数为_______(列出计算式,阿伏加德罗常数的值为)。
(4)在不同压强下,以两种不同组成进料,反应达平衡时氨的摩尔分数与温度的计算结果如下图所示。其中一种进料组成为,另一种为。(物质i的摩尔分数:)
①图中压强由小到大的顺序为_______,判断的依据是_______。
②进料组成中含有惰性气体的图是_______。
③图3中,当、时,氮气的转化率_______。该温度时,反应的平衡常数_______(化为最简式)。
18.(2023·广东卷)配合物广泛存在于自然界,且在生产和生活中都发挥着重要作用。
(1)某有机物能与形成橙红色的配离子,该配离子可被氧化成淡蓝色的配离子。
①基态的电子轨道表示式为 。
②完成反应的离子方程式:
(2)某研究小组对(1)中②的反应进行了研究。
用浓度分别为的溶液进行了三组实验,得到随时间t的变化曲线如图。
①时,在内,的平均消耗速率= 。
②下列有关说法中,正确的有 。
A.平衡后加水稀释,增大
B.平衡转化率:
C.三组实验中,反应速率都随反应进程一直减小
D.体系由橙红色转变为淡蓝色所需时间:
(3)R的衍生物L可用于分离稀土。溶液中某稀土离子(用M表示)与L存在平衡:
研究组配制了L起始浓度与L起始浓度比不同的系列溶液,反应平衡后测定其核磁共振氢谱。配体L上的某个特征H在三个物种中的化学位移不同,该特征H对应吸收峰的相对峰面积S(体系中所有特征H的总峰面积计为1)如下表。
0 1.00 0 0
a x 0.64
b 0.40 0.60
【注】核磁共振氢谱中相对峰面积S之比等于吸收峰对应H的原子数目之比;“”表示未检测到。
①时, 。
②时,平衡浓度比 。
(4)研究组用吸收光谱法研究了(3)中M与L反应体系。当时,测得平衡时各物种随的变化曲线如图。时,计算M的平衡转化率 (写出计算过程,结果保留两位有效数字)。
19.(2023·山东卷)一定条件下,水气变换反应的中间产物是。为探究该反应过程,研究水溶液在密封石英管中的分子反应:
Ⅰ.
Ⅱ.
研究发现,在反应Ⅰ、Ⅱ中,仅对反应Ⅰ有催加速作用;反应Ⅰ速率远大于反应Ⅱ,近似认为反应Ⅰ建立平衡后始终处于平衡状态。忽略水电离,其浓度视为常数。回答下列问题:
(1)一定条件下,反应Ⅰ、Ⅱ的焓变分别为、,则该条件下水气变换反应的焓变_____(用含的代数式表示)。
(2)反应Ⅰ正反应速率方程为:,k为反应速率常数。温度下,电离平衡常数为,当平衡浓度为时,浓度为_____,此时反应Ⅰ应速率_____(用含和k的代数式表示)。
(3)温度下,在密封石英管内完全充满水溶液,使分解,分解产物均完全溶于水。含碳物种浓度与反应时间的变化关系如图所示(忽略碳元素的其他存在形式)。时刻测得的浓度分别为,反应Ⅱ达平衡时,测得的浓度为。体系达平衡后_____(用含y的代数式表示,下同),反应Ⅱ的平衡常数为_____。
相同条件下,若反应起始时溶液中同时还含有盐酸,则图示点中,的浓度峰值点可能是_____(填标号)。与不同盐酸相比,达浓度峰值时,浓度_____(填“增大”“减小”或“不变”),的反应_____(填“增大”“减小”或“不变”)。
20.(2023·北京卷)尿素合成的发展体现了化学科学与技术的不断进步。
(1)十九世纪初,用氰酸银与在一定条件下反应制得,实现了由无机物到有机物的合成。该反应的化学方程式是____________________。
(2)二十世纪初,工业上以和为原料在一定温度和压强下合成尿素。反应分两步:
ⅰ.和生成;
ⅱ.分解生成尿素。
结合反应过程中能量变化示意图,下列说法正确的是__________(填序号)。
a.活化能:反应ⅰ<反应ⅱ
b.ⅰ放热反应,ⅱ为吸热反应
c.
(3)近年研究发现,电催化和含氮物质(等)在常温常压下合成尿素,有助于实现碳中和及解决含氮废水污染问题。向一定浓度的溶液通至饱和,在电极上反应生成,电解原理如图所示。
①电极是电解池的__________极。
②电解过程中生成尿素的电极反应式是_____________。
(4)尿素样品含氮量的测定方法如下。
已知:溶液中不能直接用溶液准确滴定。
①消化液中的含氮粒子是__________。
②步骤ⅳ中标准溶液的浓度和消耗的体积分别为和,计算样品含氮量还需要的实验数据有__________。
21.(2023·湖北卷)纳米碗是一种奇特的碗状共轭体系。高温条件下,可以由分子经过连续5步氢抽提和闭环脱氢反应生成。的反应机理和能量变化如下:
回答下列问题:
(1)已知中的碳氢键和碳碳键的键能分别为和,H-H键能为。估算的_______。
(2)图示历程包含_______个基元反应,其中速率最慢的是第_______个。
(3)纳米碗中五元环和六元环结构的数目分别为_______、_______。
(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,该反应的平衡常数为_______(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
(5)及反应的(为平衡常数)随温度倒数的关系如图所示。已知本实验条件下,(R为理想气体常数,c为截距)。图中两条线几乎平行,从结构的角度分析其原因是_______。
(6)下列措施既能提高反应物的平衡转化率,又能增大生成的反应速率的是_______(填标号)。
a.升高温度 b.增大压强 c.加入催化剂
22.(2023·湖南卷)聚苯乙烯是一类重要的高分子材料,可通过苯乙烯聚合制得。
Ⅰ.苯乙烯的制备
(1)已知下列反应的热化学方程式:
①
②
③
计算反应④的_______;
(2)在某温度、下,向反应器中充入气态乙苯发生反应④,其平衡转化率为50%,欲将平衡转化率提高至75%,需要向反应器中充入_______水蒸气作为稀释气(计算时忽略副反应);
(3)在、下,以水蒸气作稀释气。作催化剂,乙苯除脱氢生成苯乙烯外,还会发生如下两个副反应:
⑤
⑥
以上反应体系中,芳香烃产物苯乙烯、苯和甲苯的选择性S()随乙苯转化率的变化曲线如图所示,其中曲线b代表的产物是_______,理由是_______;
(4)关于本反应体系中催化剂的描述错误的是_______;
A.X射线衍射技术可测定晶体结构
B.可改变乙苯平衡转化率
C.降低了乙苯脱氢反应的活化能
D.改变颗粒大小不影响反应速率
Ⅱ.苯乙烯的聚合
苯乙烯聚合有多种方法,其中一种方法的关键步骤是某(Ⅰ)的配合物促进(引发剂,X表示卤素)生成自由基,实现苯乙烯可控聚合。
(5)引发剂中活性最高的是_______;
(6)室温下,①在配体L的水溶液中形成,其反应平衡常数为K;②在水中的溶度积常数为。由此可知,在配体L的水溶液中溶解反应的平衡常数为_______(所有方程式中计量系数关系均为最简整数比)。
23.(2023·辽宁卷)硫酸工业在国民经济中占有重要地位。
(1)我国古籍记载了硫酸的制备方法——“炼石胆(CuSO4·5H2O)取精华法”。借助现代仪器分析,该制备过程中CuSO4·5H2O分解的TG曲线(热重)及DSC曲线(反映体系热量变化情况,数值已省略)如下图所示。700℃左右有两个吸热峰,则此时分解生成的氧化物有SO2、 和 (填化学式)。
(2)铅室法使用了大容积铅室制备硫酸(76%以下),副产物为亚硝基硫酸,主要反应如下:
NO2+SO2+H2O=NO+H2SO4
2NO+O2=2NO2
(ⅰ)上述过程中NO2的作用为 。
(ⅱ)为了适应化工生产的需求,铅室法最终被接触法所代替,其主要原因是 (答出两点即可)。
(3)接触法制硫酸的关键反应为SO2的催化氧化:
SO2(g)+O2(g)SO3(g) ΔH=-98.9kJ·mol-1
(ⅰ)为寻求固定投料比下不同反应阶段的最佳生产温度,绘制相应转化率(α)下反应速率(数值已略去)与温度的关系如下图所示,下列说法正确的是 。
a.温度越高,反应速率越大
b.α=0.88的曲线代表平衡转化率
c.α越大,反应速率最大值对应温度越低
d.可根据不同下的最大速率,选择最佳生产温度
(ⅱ)为提高钒催化剂的综合性能,我国科学家对其进行了改良。不同催化剂下,温度和转化率关系如下图所示,催化性能最佳的是 (填标号)。
(ⅲ)设O2的平衡分压为p,SO2的平衡转化率为αe,用含p和αe的代数式表示上述催化氧化反应的Kp= (用平衡分压代替平衡浓度计算)。
24.(2023·浙江卷)水煤气变换反应是工业上的重要反应,可用于制氢。
水煤气变换反应:
该反应分两步完成:
请回答:
(1) 。
(2)恒定总压和水碳比[]投料,在不同条件下达到平衡时和的分压(某成分分压=总压×该成分的物质的量分数)如下表:
条件1 0.40 0.40 0
条件2 0.42 0.36 0.02
①在条件1下,水煤气变换反应的平衡常数 。
②对比条件1,条件2中产率下降是因为发生了一个不涉及的副反应,写出该反应方程式 。
(3)下列说法正确的是______。
A.通入反应器的原料气中应避免混入
B.恒定水碳比,增加体系总压可提高的平衡产率
C.通入过量的水蒸气可防止被进一步还原为
D.通过充入惰性气体增加体系总压,可提高反应速率
(4)水煤气变换反应是放热的可逆反应,需在多个催化剂反应层间进行降温操作以“去除”反应过程中的余热(如图1所示),保证反应在最适宜温度附近进行。
①在催化剂活性温度范围内,图2中b-c段对应降温操作的过程,实现该过程的一种操作方法是 。
A.按原水碳比通入冷的原料气 B.喷入冷水(蒸气) C.通过热交换器换热
②若采用喷入冷水(蒸气)的方式降温,在图3中作出平衡转化率随温度变化的曲线 。
(5)在催化剂活性温度范围内,水煤气变换反应的历程包含反应物分子在催化剂表面的吸附(快速)、反应及产物分子脱附等过程。随着温度升高,该反应的反应速率先增大后减小,其速率减小的原因是 。
25.(2023·浙江卷)“碳达峰·碳中和”是我国社会发展重大战略之一,还原是实现“双碳”经济的有效途径之一,相关的主要反应有:
Ⅰ:
Ⅱ:
请回答:
(1)有利于提高平衡转化率的条件是___________。
A.低温低压 B.低温高压 C.高温低压 D.高温高压
(2)反应的 , (用表示)。
(3)恒压、时,和按物质的量之比投料,反应经如下流程(主要产物已标出)可实现高效转化。
①下列说法正确的是 。
A.可循环利用,不可循环利用
B.过程ⅱ,吸收可促使氧化的平衡正移
C.过程ⅱ产生的最终未被吸收,在过程ⅲ被排出
D.相比于反应Ⅰ,该流程的总反应还原需吸收的能量更多
②过程ⅱ平衡后通入,测得一段时间内物质的量上升,根据过程ⅲ,结合平衡移动原理,解释物质的量上升的原因 。
(4)还原能力可衡量转化效率,(同一时段内与的物质的量变化量之比)。
①常压下和按物质的量之比投料,某一时段内和的转化率随温度变化如图1,请在图2中画出间R的变化趋势,并标明时R值 。
②催化剂X可提高R值,另一时段内转化率、R值随温度变化如下表:
温度/℃ 480 500 520 550
转化率/% 7.9 11.5 20.2 34.8
R 2.6 2.4 2.1 1.8
下列说法不正确的是
A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率
B.温度越低,含氢产物中占比越高
C.温度升高,转化率增加,转化率降低,R值减小
D.改变催化剂提高转化率,R值不一定增大
26.(2022·全国甲卷)金属钛(Ti)在航空航天、医疗器械等工业领域有着重要用途,目前生产钛的方法之一是将金红石转化为,再进一步还原得到钛。回答下列问题:
(1)转化为有直接氯化法和碳氯化法。在时反应的热化学方程式及其平衡常数如下:
(ⅰ)直接氯化:
(ⅱ)碳氯化:
①反应的为_______,_______Pa。
②碳氯化的反应趋势远大于直接氯化,其原因是_______。
③对于碳氯化反应:增大压强,平衡_______移动(填“向左”“向右”或“不”);温度升高,平衡转化率_______(填“变大”“变小”或“不变”)。
(2)在,将、C、以物质的量比1∶2.2∶2进行反应。体系中气体平衡组成比例(物质的量分数)随温度变化的理论计算结果如图所示。
①反应的平衡常数_______。
②图中显示,在平衡时几乎完全转化为,但实际生产中反应温度却远高于此温度,其原因是_______。
(3)碳氯化是一个“气—固—固”反应,有利于“固—固”接触的措施是_______。
27.(2022·全国乙卷)油气开采、石油化工、煤化工等行业废气普遍含有的硫化氢,需要回收处理并加以利用。回答下列问题:
(1)已知下列反应的热化学方程式:
①
②
③
计算热分解反应④的________。
(2)较普遍采用的处理方法是克劳斯工艺。即利用反应①和②生成单质硫。另一种方法是:利用反应④高温热分解。相比克劳斯工艺,高温热分解方法的优点是________,缺点是________。
(3)在、反应条件下,将的混合气进行热分解反应。平衡时混合气中与的分压相等,平衡转化率为________,平衡常数________。
(4)在、反应条件下,对于分别为、、、、的混合气,热分解反应过程中转化率随时间的变化如下图所示。
①越小,平衡转化率________,理由是________。
②对应图中曲线________,计算其在之间,分压的平均变化率为________。
28.(2022·广东卷)铬及其化合物在催化、金属防腐等方面具有重要应用。
(1)催化剂可由加热分解制备,反应同时生成无污染气体。
①完成化学方程式:______________。
②催化丙烷脱氢过程中,部分反应历程如图,过程的焓变为_______(列式表示)。
③可用于的催化氧化。设计从出发经过3步反应制备的路线_______(用“→”表示含氮物质间的转化);其中一个有颜色变化的反应的化学方程式为_______。
(2)溶液中存在多个平衡。本题条件下仅需考虑如下平衡:
(ⅰ)
(ⅱ)
①下列有关溶液的说法正确的有_______。
A.加入少量硫酸,溶液的pH不变
B.加入少量水稀释,溶液中离子总数增加
C.加入少量溶液,反应(ⅰ)的平衡逆向移动
D.加入少量固体,平衡时与的比值保持不变
②25℃时,溶液中随pH的变化关系如图。当时,设、与的平衡浓度分别为x、y、,则x、y、z之间的关系式为_______;计算溶液中的平衡浓度_____(写出计算过程,结果保留两位有效数字)。
③在稀溶液中,一种物质对光的吸收程度(A)与其所吸收光的波长()有关;在一定波长范围内,最大A对应的波长()取决于物质的结构特征;浓度越高,A越大。混合溶液在某一波长的A是各组分吸收程度之和。为研究对反应(ⅰ)和(ⅱ)平衡的影响,配制浓度相同、不同的稀溶液,测得其A随的变化曲线如图,波长、和中,与的最接近的是_______;溶液从a变到b的过程中,的值_______(填“增大”“减小”或“不变”)。
29.(2022·福建卷)异丙醇可由生物质转化得到,催化异丙醇脱水制取高值化学品丙烯的工业化技术已引起人们的关注,其主要反应如下:
Ⅰ.
Ⅱ.
回答下列问题:
(1)已知,则燃烧生成和的热化学方程式为_______。
(2)在下,刚性密闭容器中的反应体系内水蒸气浓度与反应时间关系如下表:
反应时间 0 4 8 12 t 20
浓度 0 2440 3200 3600 4000 4100
①内,_______;
②t_______16(填“>”“<”或“=”)。
(3)在恒温刚性密闭容器中,反应Ⅰ、Ⅱ均达到平衡的判据是_______(填标号)。
a.的分压不变 b.混合气体密度不变
c. d.
(4)在一定条件下,若反应Ⅰ、Ⅱ的转化率分别为98%和40%,则丙烯的产率为_______。
(5)下图为反应Ⅰ、Ⅱ达到平衡时与温度的关系曲线。
(已知:对于可逆反应,任意时刻,式中)表示物质×的分压)
①在恒压平衡体系中充入少量水蒸气时,反应Ⅰ的的状态最有可能对应图中的_______点(填“甲”“乙”或“丙”),判断依据是_______。
②时,在密闭容器中加入一定量的,体系达到平衡后,测得的分压为,则水蒸气的分压为_______(用含x的代数式表示)。
30.(2022·湖北卷)自发热材料在生活中的应用日益广泛。某实验小组为探究“”体系的发热原理,在隔热装置中进行了下表中的五组实验,测得相应实验体系的温度升高值()随时间(t)的变化曲线,如图所示。
实验编号 反应物组成
a 粉末
b 粉
c 粉饱和石灰水
d 粉石灰乳
e 粉粉末
回答下列问题:
(1)已知:
①
②
③
则的___________。
(2)温度为T时,,则饱和溶液中___________(用含x的代数式表示)。
(3)实验a中,后基本不变,原因是___________。
(4)实验b中,的变化说明粉与在该条件下___________(填“反应”或“不反应”)。实验c中,前的有变化,其原因是___________;后基本不变,其原因是___________微粒的量有限。
(5)下列说法不能解释实验d在内温度持续升高的是___________(填标号)。A.反应②的发生促使反应①平衡右移
B.反应③的发生促使反应②平衡右移
C.气体的逸出促使反应③向右进行
D.温度升高导致反应速率加快
(6)归纳以上实验结果,根据实验e的特征,用文字简述其发热原理___________。
31.(2022·重庆卷)反应在工业上有重要应用。
(1)该反应在不同温度下的平衡常数如表所示。
温度/℃ 700 800 830 1000
平衡常数 1.67 1.11 1.00 0.59
①反应的△H_____0(填“>”“<”或“=”)。
②反应常在较高温度下进行,该措施的优缺点是_____。
(2)该反应常在Pd膜反应器中进行,其工作原理如图所示。
①利用平衡移动原理解释反应器存在Pd膜时具有更高转化率的原因是_____。
②某温度下,H2在Pd膜表面上的解离过程存在如下平衡:,其正反应的活化能远小于逆反应的活化能。下列说法错误的是_____。
A.Pd膜对气体分子的透过具有选择性
B.过程2的△H>0
C.加快Pd膜内H原子迁移有利于H2的解离
D.H原子在Pd膜表面上结合为H2的过程为放热反应
③同温同压下,等物质的量的CO和H2O通入无Pd膜反应器,CO的平衡转化率为75%;若换成Pd膜反应器,CO的平衡转化率为90%,则相同时间内出口a和出口b中H2的质量比为_____。
(3)该反应也可采用电化学方法实现,反应装置如图所示。
①固体电解质采用______(填“氧离子导体”或“质子导体”)。
②阴极的电极反应式为______。
③同温同压下,相同时间内,若进口Ⅰ处n(CO):n(H2O)=a:b,出口Ⅰ处气体体积为进口Ⅰ处的y倍,则CO的转化率为_____(用a,b,y表示)。
32.(2022·湖南卷)2021年我国制氢量位居世界第一,煤的气化是一种重要的制氢途径。回答下列问题:
(1)在一定温度下,向体积固定的密闭容器中加入足量的和,起始压强为时,发生下列反应生成水煤气:
Ⅰ.
Ⅱ.
①下列说法正确的是_______;
A.平衡时向容器中充入惰性气体,反应Ⅰ的平衡逆向移动
B.混合气体的密度保持不变时,说明反应体系已达到平衡
C.平衡时的体积分数可能大于
D.将炭块粉碎,可加快反应速率
②反应平衡时,的转化率为,CO的物质的量为。此时,整个体系_______(填“吸收”或“放出”)热量_______kJ,反应Ⅰ的平衡常数_______(以分压表示,分压=总压×物质的量分数)。
(2)一种脱除和利用水煤气中方法的示意图如下:
①某温度下,吸收塔中溶液吸收一定量的后,,则该溶液的_______(该温度下的);
②再生塔中产生的离子方程式为_______;
③利用电化学原理,将电催化还原为,阴极反应式为_______。
33.(2022·山东卷)利用丁内酯(BL)制备1,丁二醇(BD),反应过程中伴有生成四氢呋喃(THF)和丁醇(BuOH)的副反应,涉及反应如下:
已知:①反应Ⅰ为快速平衡,可认为不受慢反应Ⅱ、Ⅲ的影响;②因反应Ⅰ在高压氛围下进行,故压强近似等于总压。回答下列问题:
(1)以或BD为初始原料,在、的高压氛围下,分别在恒压容器中进行反应。达平衡时,以BL为原料,体系向环境放热;以BD为原料,体系从环境吸热。忽略副反应热效应,反应Ⅰ焓变_______。
(2)初始条件同上。表示某物种i的物质的量与除外其它各物种总物质的量之比,和随时间t变化关系如图甲所示。实验测得,则图中表示变化的曲线是_______;反应Ⅰ平衡常数_______(保留两位有效数字)。以BL为原料时,时刻_______,BD产率=_______(保留两位有效数字)。
(3)为达平衡时与的比值。、、三种条件下,以为初始原料,在相同体积的刚性容器中发生反应,随时间t变化关系如图乙所示。因反应在高压氛围下进行,可忽略压强对反应速率的影响。曲线a、b、c中,最大的是_______(填代号);与曲线b相比,曲线c达到所需时间更长,原因是_______。
34.(2022·天津卷)天津地处环渤海湾,海水资源丰富。科研人员把铁的配合物(L为配体)溶于弱碱性的海水中,制成吸收液,将气体转化为单质硫,改进了湿法脱硫工艺。该工艺包含两个阶段:①的吸收氧化;②的再生。反应原理如下:
①
②
回答下列问题:
(1)该工艺的总反应方程式为 。1mol 发生该反应的热量变化为 ,在总反应中的作用是 。
(2)研究不同配体与所形成的配合物(A、B、C)对吸收转化率的影响。将配合物A、B、C分别溶于海水中,配成相同物质的量浓度的吸收液,在相同反应条件下,分别向三份吸收液持续通入,测得单位体积吸收液中吸收转化率随时间变化的曲线如图1所示。以由100%降至80%所持续的时间来评价铁配合物的脱硫效率,结果最好的是 (填“A”、“B”或“C”)。
(3)的电离方程式为 。25℃时,溶液中、、在含硫粒子总浓度中所占分数随溶液pH的变化关系如图2,由图2计算,的 , 。再生反应在常温下进行,解离出的易与溶液中的形成沉淀。若溶液中的,,为避免有FeS沉淀生成,应控制溶液pH不大于 (已知25℃时,FeS的为)。
35.(2022·重庆卷)反应在工业上有重要应用。
(1)该反应在不同温度下的平衡常数如表所示。
温度/℃ 700 800 830 1000
平衡常数 1.67 1.11 1.00 0.59
①反应的△H 0(填“>”“<”或“=”)。
②反应常在较高温度下进行,该措施的优缺点是 。
(2)该反应常在Pd膜反应器中进行,其工作原理如图所示。
①利用平衡移动原理解释反应器存在Pd膜时具有更高转化率的原因是 。
②某温度下,H2在Pd膜表面上的解离过程存在如下平衡:,其正反应的活化能远小于逆反应的活化能。下列说法错误的是 。
A.Pd膜对气体分子的透过具有选择性
B.过程2的△H>0
C.加快Pd膜内H原子迁移有利于H2的解离
D.H原子在Pd膜表面上结合为H2的过程为放热反应
③同温同压下,等物质的量的CO和H2O通入无Pd膜反应器,CO的平衡转化率为75%;若换成Pd膜反应器,CO的平衡转化率为90%,则相同时间内出口a和出口b中H2的质量比为 。
(3)该反应也可采用电化学方法实现,反应装置如图所示。
①固体电解质采用 (填“氧离子导体”或“质子导体”)。
②阴极的电极反应式为 。
③同温同压下,相同时间内,若进口Ⅰ处n(CO):n(H2O)=a:b,出口Ⅰ处气体体积为进口Ⅰ处的y倍,则CO的转化率为 (用a,b,y表示)。
36.(2022·辽宁卷)工业合成氨是人类科学技术的一项重大突破,目前已有三位科学家因其获得诺贝尔奖,其反应为:。回答下列问题:
(1)合成氨反应在常温下 (填“能”或“不能”)自发。
(2) 温(填“高”或“低”,下同)有利于提高反应速率, 温有利于提高平衡转化率,综合考虑催化剂(铁触媒)活性等因素,工业常采用。
针对反应速率与平衡产率的矛盾,我国科学家提出了两种解决方案。
(3)方案一:双温-双控-双催化剂。使用双催化剂,通过光辐射产生温差(如体系温度为时,的温度为,而的温度为)。
下列说法正确的是 。
a.氨气在“冷Ti”表面生成,有利于提高氨的平衡产率
b.在“热Fe”表面断裂,有利于提高合成氨反应速率
c.“热Fe”高于体系温度,有利于提高氨的平衡产率
d.“冷Ti”低于体系温度,有利于提高合成氨反应速率
(4)方案二:复合催化剂。
下列说法正确的是 。
a.时,复合催化剂比单一催化剂效率更高
b.同温同压下,复合催化剂有利于提高氨的平衡产率
c.温度越高,复合催化剂活性一定越高
(5)某合成氨速率方程为:,根据表中数据, ;
实验
1 m n p q
2 2m n p 2q
3 m n 0.1p 10q
4 m 2n p 2.828q
在合成氨过程中,需要不断分离出氨的原因为 。
a.有利于平衡正向移动 b.防止催化剂中毒 c.提高正反应速率
(6)某种新型储氢材料的晶胞如图,八面体中心为M金属离子,顶点均为配体;四面体中心为硼原子,顶点均为氢原子。若其摩尔质量为,则M元素为 (填元素符号);在该化合物中,M离子的价电子排布式为 。
37.(2022·江苏卷)氢气是一种清洁能源,绿色环保制氢技术研究具有重要意义。
(1)“热电循环制氢”经过溶解、电解、热水解和热分解4个步骤,其过程如图所示。
①电解在质子交换膜电解池中进行。阳极区为酸性溶液,阴极区为盐酸,电解过程中转化为。电解时阳极发生的主要电极反应为 (用电极反应式表示)。
②电解后,经热水解和热分解的物质可循环使用。在热水解和热分解过程中,发生化合价变化的元素有 (填元素符号)。
(2)“热循环制氢和甲酸”的原理为:在密闭容器中,铁粉与吸收制得的溶液反应,生成、和;再经生物柴油副产品转化为Fe。
①实验中发现,在时,密闭容器中溶液与铁粉反应,反应初期有生成并放出,该反应的离子方程式为 。
②随着反应进行,迅速转化为活性,活性是转化为的催化剂,其可能反应机理如图所示。根据元素电负性的变化规律。如图所示的反应步骤Ⅰ可描述为 。
③在其他条件相同时,测得Fe的转化率、的产率随变化如题图所示。的产率随增加而增大的可能原因是 。
(3)从物质转化与资源综合利用角度分析,“热循环制氢和甲酸”的优点是 。
38.(2022·海南卷)某空间站的生命保障系统功能之一是实现氧循环,其中涉及反应:
回答问题:
(1)已知:电解液态水制备,电解反应的。由此计算的燃烧热(焓) 。
(2)已知:的平衡常数(K)与反应温度(t)之间的关系如图1所示。
①若反应为基元反应,且反应的与活化能(Ea)的关系为。补充完成该反应过程的能量变化示意图(图2) 。
②某研究小组模拟该反应,温度t下,向容积为10L的抽空的密闭容器中通入和,反应平衡后测得容器中。则的转化率为 ,反应温度t约为 ℃。
(3)在相同条件下,与还会发生不利于氧循环的副反应:,在反应器中按通入反应物,在不同温度、不同催化剂条件下,反应进行到2min时,测得反应器中、浓度()如下表所示。
催化剂 t=350℃ t=400℃
催化剂Ⅰ 10.8 12722 345.2 42780
催化剂Ⅱ 9.2 10775 34 38932
在选择使用催化剂Ⅰ和350℃条件下反应,生成的平均反应速率为 ;若某空间站的生命保障系统实际选择使用催化剂Ⅱ和400℃的反应条件,原因是 。
39.(2022·河北卷)氢能是极具发展潜力的清洁能源,以氢燃料为代表的燃料电池有良好的应用前景。
(1)时,燃烧生成)放热,蒸发吸热,表示燃烧热的热化学方程式为 。
(2)工业上常用甲烷水蒸气重整制备氢气,体系中发生如下反应。
Ⅰ.
Ⅱ.
①下列操作中,能提高平衡转化率的是 (填标号)。
A.增加用量 B.恒温恒压下通入惰性气体
C.移除 D.加入催化剂
②恒温恒压条件下,1molCH4(g)和1molH2O(g)反应达平衡时,的转化率为,的物质的量为,则反应Ⅰ的平衡常数 (写出含有α、b的计算式;对于反应,,x为物质的量分数)。其他条件不变,起始量增加到,达平衡时,,平衡体系中的物质的量分数为 (结果保留两位有效数字)。
(3)氢氧燃料电池中氢气在 (填“正”或“负”)极发生反应。
(4)在允许自由迁移的固体电解质燃料电池中,放电的电极反应式为 。
(5)甲醇燃料电池中,吸附在催化剂表面的甲醇分子逐步脱氢得到CO,四步可能脱氢产物及其相对能量如图,则最可行途径为a→ (用等代号表示)。
40.(2022·浙江卷)主要成分为的工业废气的回收利用有重要意义。
(1)回收单质硫。将三分之一的燃烧,产生的与其余混合后反应:。在某温度下达到平衡,测得密闭系统中各组分浓度分别为、、,计算该温度下的平衡常数 。
(2)热解制。根据文献,将和的混合气体导入石英管反应器热解(一边进料,另一边出料),发生如下反应:
Ⅰ
Ⅱ
总反应:
Ⅲ
投料按体积之比,并用稀释;常压,不同温度下反应相同时间后,测得和体积分数如下表:
温度/ 950 1000 1050 1100 1150
0.5 1.5 3.6 5.5 8.5
0.0 0.0 0.1 0.4 1.8
请回答:
①反应Ⅲ能自发进行的条件是 。
②下列说法正确的是 。
A.其他条件不变时,用Ar替代作稀释气体,对实验结果几乎无影响
B.其他条件不变时,温度越高,的转化率越高
C.由实验数据推出中的键强于中的键
D.恒温恒压下,增加的体积分数,的浓度升高
③若将反应Ⅲ看成由反应Ⅰ和反应Ⅱ两步进行,画出由反应原料经两步生成产物的反应过程能量示意图 。
④在,常压下,保持通入的体积分数不变,提高投料比,的转化率不变,原因是 。
⑤在范围内(其他条件不变),的体积分数随温度升高发生变化,写出该变化规律并分析原因 。
41.(2022·浙江卷)工业上,以煤炭为原料,通入一定比例的空气和水蒸气,经过系列反应可以得到满足不同需求的原料气。请回答:
(1)在C和O2的反应体系中:
反应1:C(s)+O2(g)=CO2(g) ΔH1=-394kJ·mol-1
反应2:2CO(g)+O2(g)=2CO2(g) ΔH2=-566kJ·mol-1
反应3:2C(s)+O2(g)=2CO(g) ΔH3。
① 设y=ΔH-TΔS,反应1、2和3的y随温度的变化关系如图1所示。图中对应于反应3的线条是 。
②一定压强下,随着温度的升高,气体中CO与CO2的物质的量之比 。
A.不变 B.增大 C.减小 D.无法判断
(2)水煤气反应:C(s)+H2O(g)=CO(g)+H2(g) ΔH=131kJ·mol-1。工业生产水煤气时,通常交替通入合适量的空气和水蒸气与煤炭反应,其理由是 。
(3)一氧化碳变换反应:CO(g)+H2O(g)=CO2(g)+H2(g) ΔH=-41kJ·mol-1。
①一定温度下,反应后测得各组分的平衡压强(即组分的物质的量分数×总压):p(CO)=0.25MPa、p(H2O)=0.25MPa、p(CO2)=0.75MPa和p(H2)=0.75MPa,则反应的平衡常数K的数值为 。
②维持与题①相同的温度和总压,提高水蒸气的比例,使CO的平衡转化率提高到90%,则原料气中水蒸气和CO的物质的量之比为 。
③生产过程中,为了提高变换反应的速率,下列措施中合适的是 。
A.反应温度愈高愈好 B.适当提高反应物压强
C.选择合适的催化剂 D.通入一定量的氮气
④以固体催化剂M催化变换反应,若水蒸气分子首先被催化剂的活性表面吸附而解离,能量-反应过程如图2所示。
用两个化学方程式表示该催化反应历程(反应机理):步骤Ⅰ: ;步骤Ⅱ: 。
1.(2021·山东卷)2 甲氧基 2 甲基丁烷(TAME)常用作汽油原添加剂。在催化剂作用下,可通过甲醇与烯烃的液相反应制得,体系中同时存在如图反应:
反应Ⅰ:+CH3OH △H1
反应Ⅱ:+CH3OH△H2
反应Ⅲ: △H3
回答下列问题:
(1)反应Ⅰ、Ⅱ、Ⅲ以物质的量分数表示的平衡常数Kx与温度T变化关系如图所示。据图判断,A和B中相对稳定的是__(用系统命名法命名);的数值范围是___(填标号)。
A.< 1 B. 1~0 C.0~1 D.>1
(2)为研究上述反应体系的平衡关系,向某反应容器中加入1.0molTAME,控制温度为353K,测得TAME的平衡转化率为α。已知反应Ⅲ的平衡常数Kx3=9.0,则平衡体系中B的物质的量为___mol,反应Ⅰ的平衡常数Kx1=___。同温同压下,再向该容器中注入惰性溶剂四氢呋喃稀释,反应Ⅰ的化学平衡将__(填“正向移动”“逆向移动”或“不移动”)平衡时,A与CH3OH物质的量浓度之比c(A):c(CH3OH)=___。
(3)为研究反应体系的动力学行为,向盛有四氢呋喃的另一容器中加入一定量A、B和CH3OH。控制温度为353K,A、B物质的量浓度c随反应时间t的变化如图所示。代表B的变化曲线为__(填“X”或“Y”);t=100s时,反应Ⅲ的正反应速率v正__逆反应速率v逆(填“>”“<”或“=)。
2.(2021·浙江卷)含硫化合物是实验室和工业上的常用化学品。请回答:
(1)实验室可用铜与浓硫酸反应制备少量:。判断该反应的自发性并说明理由_______。
(2)已知。时,在一恒容密闭反应器中充入一定量的和,当反应达到平衡后测得、和的浓度分别为、和。
①该温度下反应的平衡常数为_______。
②平衡时的转化率为_______。
(3)工业上主要采用接触法由含硫矿石制备硫酸。
①下列说法正确的是_______。
A.须采用高温高压的反应条件使氧化为
B.进入接触室之前的气流无需净化处理
C.通入过量的空气可以提高含硫矿石和的转化率
D.在吸收塔中宜采用水或稀硫酸吸收以提高吸收速率
②接触室结构如图1所示,其中1~4表示催化剂层。图2所示进程中表示热交换过程的是_______。
A. B. C. D. E. F. G.
③对于放热的可逆反应,某一给定转化率下,最大反应速率对应的温度称为最适宜温度。在图3中画出反应的转化率与最适宜温度(曲线Ⅰ)、平衡转化率与温度(曲线Ⅱ)的关系曲线示意图(标明曲线Ⅰ、Ⅱ)_______。
(4)一定条件下,在溶液体系中,检测得到pH 时间振荡曲线如图4,同时观察到体系由澄清→浑浊→澄清的周期性变化。可用一组离子方程式表示每一个周期内的反应进程,请补充其中的2个离子方程式。
Ⅰ.
Ⅱ.①_______;
Ⅲ.;
Ⅳ.②_______。
3.(2021·广东卷)我国力争于2030年前做到碳达峰,2060年前实现碳中和。CH4与CO2重整是CO2利用的研究热点之一。该重整反应体系主要涉及以下反应:
a)CH4(g)+CO2(g)2CO(g)+2H2(g) H1
b)CO2(g)+H2(g)CO(g)+H2O(g) H2
c)CH4(g)C(s)+2H2(g) H3
d)2CO(g)CO2(g)+C(s) H4
e)CO(g)+H2(g)H2O(g)+C(s) H5
(1)根据盖斯定律,反应a的 H1=_______(写出一个代数式即可)。
(2)上述反应体系在一定条件下建立平衡后,下列说法正确的有_______。
A.增大CO2与CH4的浓度,反应a、b、c的正反应速率都增加
B.移去部分C(s),反应c、d、e的平衡均向右移动
C.加入反应a的催化剂,可提高CH4的平衡转化率
D.降低反应温度,反应a~e的正、逆反应速率都减小
(3)一定条件下,CH4分解形成碳的反应历程如图所示。该历程分_______步进行,其中,第_______步的正反应活化能最大。
(4)设K为相对压力平衡常数,其表达式写法:在浓度平衡常数表达式中,用相对分压代替浓度。气体的相对分压等于其分压(单位为kPa)除以p0(p0=100kPa)。反应a、c、e的ln K随(温度的倒数)的变化如图所示。
①反应a、c、e中,属于吸热反应的有_______(填字母)。
②反应c的相对压力平衡常数表达式为K=_______。
③在图中A点对应温度下、原料组成为n(CO2):n(CH4)=1:1、初始总压为100kPa的恒容密闭容器中进行反应,体系达到平衡时H2的分压为40kPa。计算CH4的平衡转化率,写出计算过程_______。
(5)CO2用途广泛,写出基于其物理性质的一种用途:_______。
4.(2021·河北卷)当今,世界多国相继规划了碳达峰、碳中和的时间节点。因此,研发二氧化碳利用技术,降低空气中二氧化碳含量成为研究热点。
(1)大气中的二氧化碳主要来自于煤、石油及其他含碳化合物的燃烧。已知25℃时,相关物质的燃烧热数据如表:
物质 H2(g) C(石墨,s) C6H6(l)
燃烧热△H(kJ mol 1) 285.8 393.5 3267.5
(1)则25℃时H2(g)和C(石墨,s)生成C6H6(l)的热化学方程式为________。
(2)雨水中含有来自大气的CO2,溶于水中的CO2进一步和水反应,发生电离:
①CO2(g)=CO2(aq)
②CO2(aq)+H2O(l)=H+(aq)+HCO(aq)
25℃时,反应②的平衡常数为K2。
溶液中CO2的浓度与其在空气中的分压成正比(分压=总压×物质的量分数),比例系数为ymol L 1 kPa 1,当大气压强为pkPa,大气中CO2(g)的物质的量分数为x时,溶液中H+浓度为________mol L 1(写出表达式,考虑水的电离,忽略HCO的电离)
(3)105℃时,将足量的某碳酸氢盐(MHCO3)固体置于真空恒容容器中,存在如下平衡:2MHCO3(s)M2CO3(s)+H2O(g)+CO2(g)。上述反应达平衡时体系的总压为46kPa。
保持温度不变,开始时在体系中先通入一定量的CO2(g),再加入足量MHCO3(s),欲使平衡时体系中水蒸气的分压小于5kPa,CO2(g)的初始压强应大于________kPa。
(4)我国科学家研究Li—CO2电池,取得了重大科研成果,回答下列问题:
①Li—CO2电池中,Li为单质锂片,则该电池中的CO2在___(填“正”或“负”)极发生电化学反应。研究表明,该电池反应产物为碳酸锂和单质碳,且CO2电还原后与锂离子结合形成碳酸锂按以下4个步骤进行,写出步骤Ⅲ的离子方程式。
Ⅰ.2CO2+2e =C2O Ⅱ.C2O=CO2+CO
Ⅲ.__________ Ⅳ.CO+2Li+=Li2CO3
②研究表明,在电解质水溶液中,CO2气体可被电化学还原。
Ⅰ.CO2在碱性介质中电还原为正丙醇(CH3CH2CH2OH)的电极反应方程式为_________。
Ⅱ.在电解质水溶液中,三种不同催化剂(a、b、c)上CO2电还原为CO的反应进程中(H+被还原为H2的反应可同时发生),相对能量变化如图.由此判断,CO2电还原为CO从易到难的顺序为_______(用a、b、c字母排序)。
5.(2021·湖南卷)氨气中氢含量高,是一种优良的小分子储氢载体,且安全、易储运,可通过下面两种方法由氨气得到氢气。
方法I:氨热分解法制氢气
相关化学键的键能数据
化学键
键能 946 436.0 390.8
一定温度下,利用催化剂将分解为和。回答下列问题:
(1)反应_______;
(2)已知该反应的,在下列哪些温度下反应能自发进行?_______(填标号)
A.25℃ B.125℃ C.225℃ D.325℃
(3)某兴趣小组对该反应进行了实验探究。在一定温度和催化剂的条件下,将通入3L的密闭容器中进行反应(此时容器内总压为200kPa),各物质的分压随时间的变化曲线如图所示。
①若保持容器体积不变,时反应达到平衡,用的浓度变化表示时间内的反应速率_______(用含的代数式表示)
②时将容器体积迅速缩小至原来的一半并保持不变,图中能正确表示压缩后分压变化趋势的曲线是_______(用图中a、b、c、d表示),理由是_______;
③在该温度下,反应的标准平衡常数_______。(已知:分压=总压×该组分物质的量分数,对于反应,,其中,、、、为各组分的平衡分压)。
方法Ⅱ:氨电解法制氢气
利用电解原理,将氨转化为高纯氢气,其装置如图所示。
(4)电解过程中的移动方向为_______(填“从左往右”或“从右往左”);
(5)阳极的电极反应式为_______。
KOH溶液KOH溶液
6.(2021·浙江卷)“氯碱工业”以电解饱和食盐水为基础制取氯气等产品, 氯气是实验室和工业上的常用气体。请回答:
(1)电解饱和食盐水制取氯气的化学方程式是______。
(2)下列说法不正确的是______。
A.可采用碱石灰干燥氯气
B.可通过排饱和食盐水法收集氯气
C.常温下,可通过加压使氯气液化而储存于钢瓶中
D.工业上,常用氢气和氯气反应生成的氯化氢溶于水制取盐酸
(3)在一定温度下,氯气溶于水的过程及其平衡常数为:
Cl2(g) Cl2(aq) K1=c(Cl2)/p
Cl 2(aq) + H2O(l) H+ (aq)+Cl (aq) + HClO(aq) K2
其中p为Cl2(g)的平衡压强,c(Cl2)为Cl2在水溶液中的平衡浓度。
①Cl2(g) Cl2(aq)的焓变ΔH1______0。(填”>”、“=”或“<”)
②平衡常数K2的表达式为K2=______。
③氯气在水中的溶解度(以物质的量浓度表示)为c,则c=______。(用平衡压强p和上述平衡常数表示,忽略HClO的电离)
(4)工业上,常采用“加碳氯化”的方法以高钛渣(主要成分为TiO2)为原料生产TiCl4,相应的化学方程式为;
I.TiO2(s)+2Cl2(g) TiCl4(g)+O2(g) ΔHI=181 mol·L 1,KI= 3.4×10 29
II.2C(s)+O2(g) 2CO(g) ΔHII= 221 mol·L 1,KII=1.2×1048
结合数据说明氯化过程中加碳的理由______ 。
(5)在一定温度下,以I2为催化剂,氯苯和Cl2在CS2中发生平行反应,分别生成邻二氯苯和对二氯苯,两产物浓度之比与反应时间无关。反应物起始浓度均为0.5 mol·L 1,反应30 min测得氯苯15%转化为邻二氯苯,25%转化为对二氯苯。保持其他条件不变,若要提高产物中邻二氯苯的比例,可采用的措施是______。
A.适当提高反应温度 B.改变催化剂
C.适当降低反应温度 D.改变反应物浓度
7.(2021·北京·高考真题)某小组探究卤素参与的氧化还原反应,从电极反应角度分析物质氧化性和还原性的变化规律。
(1)浓盐酸与MnO2混合加热生成氯气。氯气不再逸出时,固液混合物A中仍存在盐酸和MnO2。
①反应的离子方程式是_______。
②电极反应式:
i.还原反应:MnO2+2e-+4H+=Mn2++2H2O
ii.氧化反应:_______。
③根据电极反应式,分析A中仍存在盐酸和MnO2的原因。
i.随c(H+)降低或c(Mn2+)浓度升高,MnO2氧化性减弱。
ii.随c(Cl-)降低,_______。
④补充实验证实了③中的分析。
实验操作 试剂 产物
I 较浓H2SO4 有氯气
II a 有氯气
III a+b 无氯气
a是_______,b是_______。
(2)利用c(H+)浓度对MnO2氧化性的影响,探究卤素离子的还原性。相同浓度的KCl、KBr和KI溶液,能与MnO2反应所需的最低c(H+)由大到小的顺序是_______,从原子结构角度说明理由______________。
(3)根据(1)中结论推测:酸性条件下,加入某种化合物可以提高溴的氧化性,将Mn2+氧化为MnO2。经实验证实了推测,该化合物是_______。
(4)Ag分别与1mol·L1的盐酸、氢溴酸和氢碘酸混合,Ag只与氢碘酸发生置换反应,试解释原因:_______。
(5)总结:物质氧化性和还原性变化的一般规律是_______。
8.(2021·北京·高考真题)某小组实验验证“Ag++Fe2+Fe3++Ag↓”为可逆反应并测定其平衡常数。
(1)实验验证
实验I:将0.0100 mol/L Ag2SO4溶液与0.0400 mo/L FeSO4溶液(pH=1)等体积混合,产生灰黑色沉淀,溶液呈黄色。
实验II:向少量Ag粉中加入0.0100 mol/L Fe2(SO4)3溶液(pH=1),固体完全溶解。
①取I中沉淀,加入浓硝酸,证实沉淀为Ag。现象是_______。
②II中溶液选用Fe2(SO4)3,不选用Fe(NO3)3的原因是_______。
综合上述实验,证实“Ag++Fe2+Fe3++Ag↓”为可逆反应。
③小组同学采用电化学装置从平衡移动角度进行验证。补全电化学装置示意图,写出操作及现象_______。
(2)测定平衡常数
实验Ⅲ:一定温度下,待实验Ⅰ中反应达到平衡状态时,取v mL上层清液,用c1 mol/L KSCN标准溶液滴定Ag+,至出现稳定的浅红色时消耗KSCN标准溶液v1 mL。
资料:Ag++SCN-AgSCN↓(白色) K=1012
Fe3++SCN-FeSCN2+(红色) K=102.3
①滴定过程中Fe3+的作用是_______。
②测得平衡常数K=_______。
(3)思考问题
①取实验I的浊液测定c(Ag+),会使所测K值_______(填“偏高”“偏低”或“不受影响”)。
②不用实验II中清液测定K的原因是_______。
9.(2021·北京·高考真题)环氧乙烷(,简称EO)是一种重要的工业原料和消毒剂。由乙烯经电解制备EO的原理示意图如下。
(1)①阳极室产生Cl2后发生的反应有:_______、CH2=CH2+HClO→HOCH2CH2Cl。
②结合电极反应式说明生成溶液a的原理_______。
(2)一定条件下,反应物按一定流速通过该装置。
电解效率η和选择性S的定义:
η(B)=×100%
S(B)=×100%
①若η(EO)=100%,则溶液b的溶质为_______。
②当乙烯完全消耗时,测得η(EO)≈70%,S(EO)≈97%,推测η(EO)≈70%的原因:
I.阳极有H2O放电
II.阳极有乙烯放电
III.阳极室流出液中含有Cl2和HClO
……
i.检验电解产物,推测I不成立。需要检验的物质是_______。
ii.假设没有生成EO的乙烯全部在阳极放电生成CO2,η(CO2)≈_______%。经检验阳极放电产物没有CO2。
iii.实验证实推测III成立,所用试剂及现象是_______。
可选试剂:AgNO3溶液、KI溶液、淀粉溶液、品红溶液。
10.(2021·天津·高考真题)铁单质及其化合物的应用非常广泛。
(1)基态Fe原子的价层电子排布式为___________。
(2)用X射线衍射测定,得到Fe的两种晶胞A、B,其结构如图所示。晶胞A中每个Fe原子紧邻的原子数为___________。每个晶胞B中含Fe原子数为___________。
(3)合成氨反应常使用铁触媒提高反应速率。如图为有、无铁触媒时,反应的能量变化示意图。写出该反应的热化学方程式___________。从能量角度分析,铁触媒的作用是___________。
(4)Fe3+可与H2O、SCN-、F-等配体形成配位数为6的配离子,如、、。某同学按如下步骤完成实验:
①为浅紫色,但溶液Ⅰ却呈黄色,其原因是___________,为了能观察到溶液Ⅰ中的浅紫色,可采取的方法是___________。
②已知Fe3+与SCN-、F-的反应在溶液中存在以下平衡:;,向溶液Ⅱ中加入NaF后,溶液颜色由红色转变为无色。若该反应是可逆反应,其离子方程式为___________,平衡常数为___________(用K1和K2表示)。
11.(2021·天津·高考真题)CS2是一种重要的化工原料。工业上可以利用硫(S8)与CH4为原料制备CS2,S8受热分解成气态S2,发生反应,回答下列问题:
(1)CH4的电子式为___________,CS2分子的立体构型为___________。
(2)某温度下,若S8完全分解成气态S2。在恒温密闭容器中,S2与CH4物质的量比为2∶1时开始反应。
①当CS2的体积分数为10%时,CH4的转化率为___________。
②当以下数值不变时,能说明该反应达到平衡的是___________(填序号)。
a.气体密度b.气体总压c.CH4与S2体积比d.CS2的体积分数
(3)一定条件下,CH4与S2反应中CH4的平衡转化率、S8分解产生S2的体积分数随温度的变化曲线如图所示。据图分析,生成CS2的反应为___________(填“放热”或“吸热”)反应。工业上通常采用在600~650℃的条件下进行此反应,不采用低于600℃的原因是___________。
(4)用燃煤废气(含N2、O2、SO2、CO2、H2O、NOx等)使尾气中的H2S转化为单后硫S,可实现废物利用,保护环境,写出其中一个反应的化学方程式___________。
12.(2021·辽宁·高考真题)苯催化加氢制备环己烷是化工生产中的重要工艺,一定条件下,发生如下反应:
Ⅰ.主反应:(g)+3H2(g) (g) H1<0
Ⅱ.副反应:(g) (g) H2>0
回答下列问题:
(1)已知:Ⅲ.
Ⅳ.2 (g)+15O2(g) 12CO2(g)+6H2O(l) H4
Ⅴ.(g)+9O2(g)=6CO2(g)+6H2O(l) H5
则_______(用、和表示)。
(2)有利于提高平衡体系中环己烷体积分数的措施有_______。
A.适当升温 B.适当降温 C.适当加压 D.适当减压
(3)反应Ⅰ在管式反应器中进行,实际投料往往在的基础上适当增大用量,其目的是_______。
(4)氢原子和苯分子吸附在催化剂表面活性中心时,才能发生反应,机理如图。当中混有微量或等杂质时,会导致反应Ⅰ的产率降低,推测其可能原因为_______。
(5)催化剂载体中的酸性中心能催化苯及环己烷的裂解。已知酸性中心可结合孤电子对,下图中可作为酸性中心的原子的标号是_______(填“①”“②”或“③”)。
(6)恒压反应器中,按照投料,发生Ⅰ、Ⅱ反应,总压为,平衡时苯的转化率为α,环己烷的分压为p,则反应1的_______(列出计算式即可,用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
13.(2021·海南·高考真题)碳及其化合物间的转化广泛存在于自然界及人类的生产和生活中。已知25℃,时:
①葡萄糖完全燃烧生成和,放出热量。
② 。
回答问题:
(1)25℃时,与经光合作用生成葡萄糖和的热化学方程式为___________。
(2)25℃,时,气态分子断开化学键的焓变称为键焓。已知、键的键焓分别为、,分子中碳氧键的键焓为___________。
(3)溶于水的只有部分转化为,大部分以水合的形式存在,水合可用表示。已知25℃时,的平衡常数,正反应的速率可表示为,逆反应的速率可表示为,则___________(用含的代数式表示)。
(4)25℃时,潮湿的石膏雕像表面会发生反应:,其平衡常数___________。[已知,]
(5)溶洞景区限制参观的游客数量,主要原因之一是游客呼吸产生的气体对钟乳石有破坏作用,从化学平衡的角度说明其原因___________。
14.(2021·湖北·高考真题)丙烯是一种重要的化工原料,可以在催化剂作用下,由丙烷直接脱氢或氧化脱氢制备。
反应Ⅰ(直接脱氢):C3H8(g)=C3H6(g)+H2(g)△H1=+125kJ·mol-1
反应Ⅱ(氧化脱氢):C3H8(g)+O2(g)=C3H6(g)+H2O(g)△H2=-118kJ·mol-1
(1)已知键能:E(C—H)=416kJ·mol-1,E(H—H)=436kJ·mol-1,由此计算生成1mol碳碳π键放出的能量为___kJ。
(2)对于反应Ⅰ,总压恒定为100kPa,在密闭容器中通入C3H8和N2的混合气体(N2不参与反应),从平衡移动的角度判断,达到平衡后“通入N2”的作用是___。在温度为T1时,C3H8的平衡转化率与通入气体中C3H8的物质的量分数的关系如图a所示,计算T1时反应Ⅰ的平衡常数Kp=__kPa(以分压表示,分压=总压×物质的量分数,保留一位小数)。
(3)在温度为T2时,通入气体分压比为p(C3H8):p(O2):p(N2)=10:5:85的混合气体,各组分气体的分压随时间的变化关系如图b所示。0~1.2s生成C3H6的平均速率为__kPa·s-1;;在反应一段时间后,C3H8和O2的消耗速率比小于2∶1的原因为___。
(4)恒温刚性密闭容器中通入气体分压比为p(C3H8):p(O2):p(N2)=2:13:85的混合气体,已知某反应条件下只发生如下反应(k,k′为速率常数):
反应Ⅱ:2C3H8(g)+O2(g)=2C3H6(g)+2H2O(g) k
反应Ⅲ:2C3H6(g)+9O2(g)=6CO2(g)+6H2O(g) k′
实验测得丙烯的净生成速率方程为v(C3H6)=kp(C3H8)-k′p(C3H6),可推测丙烯的浓度随时间的变化趋势为__,其理由是___。
15.(2021·江苏·高考真题)甲烷是重要的资源,通过下列过程可实现由甲烷到氢气的转化。
(1)500℃时,CH4与H2O重整主要发生下列反应:
CH4(g)+H2O(g)CO(g)+3H2(g)
CO(g)+H2O(g)H2(g)+CO2(g)
已知CaO(s)+CO2(g)=CaCO3(s) ΔH=-178.8kJ·mol-1。向重整反应体系中加入适量多孔CaO,其优点是___。
(2)CH4与CO2重整的主要反应的热化学方程式为
反应I:CH4(g)+CO2(g)=2CO(g)+2H2(g) ΔH=246.5kJ·mol-1
反应II:H2(g)+CO2(g)=CO(g)+H2O(g) ΔH=41.2kJ·mol-1
反应III:2CO(g)=CO2(g)+C(s) ΔH=-172.5kJ·mol-1
①在CH4与CO2重整体系中通入适量H2O(g),可减少C(s)的生成,反应3CH4(g)+CO2(g)+2H2O(g)=4CO(g)+8H2(g)的ΔH=___。
②1.01×105Pa下,将n起始(CO2):n起始(CH4)=1:1的混合气体置于密闭容器中,不同温度下重整体系中CH4和CO2的平衡转化率如图1所示。800℃下CO2平衡转化率远大于600℃下CO2平衡转化率,其原因是___。
(3)利用铜—铈氧化物(xCuO·yCeO2,Ce是活泼金属)催化氧化可除去H2中少量CO,催化氧化过程中Cu、Ce的化合价均发生变化,可能机理如图2所示。将n(CO):n(O2):n(H2):n(N2)=1:1:49:49的混合气体以一定流速通过装有xCuO·yCeO2催化剂的反应器,CO的转化率随温度变化的曲线如图3所示。
①Ce基态原子核外电子排布式为[Xe]4f15d16s2,图2所示机理的步骤(i)中,元素Cu、Ce化合价发生的变化为___。
②当催化氧化温度超过150℃时,催化剂的催化活性下降,其可能原因是___。
1.[2020江苏卷]CO2/ HCOOH循环在氢能的贮存/释放、燃料电池等方面具有重要应用。
(1)CO2催化加氢。在密闭容器中,向含有催化剂的KHCO3溶液(CO2与KOH溶液反应制得)中通入H2生成HCOO ,其离子方程式为__________;其他条件不变,HCO3 转化为HCOO 的转化率随温度的变化如图 1所示。反应温度在40℃~80℃范围内,HCO3 催化加氢的转化率迅速上升,其主要原因是_____________。
(2) HCOOH燃料电池。研究 HCOOH燃料电池性能的装置如图 2所示,两电极区间用允许K+、H+通过的半透膜隔开。
①电池负极电极反应式为_____________;放电过程中需补充的物质A为_________(填化学式)。
②图 2所示的 HCOOH燃料电池放电的本质是通过 HCOOH与O2的反应,将化学能转化为电能,其反应的离子方程式为_______________。
(3) HCOOH催化释氢。在催化剂作用下, HCOOH分解生成CO2和H2可能的反应机理如图 3所示。
①HCOOD催化释氢反应除生成CO2外,还生成__________(填化学式)。
②研究发现:其他条件不变时,以 HCOOK溶液代替 HCOOH催化释氢的效果更佳,其具体优点是_______________。
2.[2020天津卷]利用太阳能光解水,制备的H2用于还原CO2合成有机物,可实现资源的再利用。回答下列问题:
Ⅰ. 半导体光催化剂浸入水或电解质溶液中,光照时可在其表面得到产物
(1)图1为该催化剂在水中发生光催化反应的原理示意图。光解水能量转化形式为 。
(2)若将该催化剂置于Na2SO3溶液中,产物之一为 ,另一产物为 。若将该催化剂置于AgNO3溶液中,产物之一为O2,写出生成另一产物的离子反应式 。
Ⅱ. 用H2还原CO2可以在一定条件下合成CH3OH(不考虑副反应)
(3)某温度下,恒容密闭容器中,CO2和H2的起始浓度分别为 a mol·L 1和3 a mol·L 1,反应平衡时,CH3OH的产率为b,该温度下反应平衡常数的值为 。
(4)恒压下,CO2和H2的起始物质的量比为1∶3时,该反应在无分子筛膜时甲醇的平衡产率和有分子筛膜时甲醇的产率随温度的变化如图2所示,其中分子筛膜能选择性分离出H2O。
①甲醇平衡产率随温度升高而降低的原因为 。
②P点甲醇产率高于T点的原因为 。
③根据图2,在此条件下采用该分子筛膜时的最佳反应温度为 °C。
Ⅲ. 调节溶液pH可实现工业废气CO2的捕获和释放
(5)的空间构型为 。已知25℃碳酸电离常数为Ka1、Ka2,当溶液pH=12时,。
3.[2020浙江7月选考]研究氧化制对资源综合利用有重要意义。
相关的主要化学反应有:
Ⅰ
Ⅱ
Ⅲ
Ⅳ
已知:时,相关物质的相对能量(如图1)。
可根据相关物质的相对能量计算反应或变化的(随温度变化可忽略)。例如:
。
请回答:
(1)①根据相关物质的相对能量计算_____。
②下列描述正确的是_____
A.升高温度反应Ⅰ的平衡常数增大
B.加压有利于反应Ⅰ、Ⅱ的平衡正向移动
C.反应Ⅲ有助于乙烷脱氢,有利于乙烯生成
D.恒温恒压下通水蒸气,反应Ⅳ的平衡逆向移动
③有研究表明,在催化剂存在下,反应Ⅱ分两步进行,过程如下:
,且第二步速率较慢(反应活化能为)。根据相关物质的相对能量,画出反应Ⅱ分两步进行的“能量 反应过程图”,起点从的能量,开始(如图2)。
(2)①和按物质的量1:1投料,在和保持总压恒定的条件下,研究催化剂X对“氧化制”的影响,所得实验数据如下表:
催化剂 转化率 转化率 产率
催化剂X 19.0 37.6 3.3
结合具体反应分析,在催化剂X作用下,氧化的主要产物是______,判断依据是_______。
②采用选择性膜技术(可选择性地让某气体通过而离开体系)可提高的选择性(生成的物质的量与消耗的物质的量之比)。在,乙烷平衡转化率为,保持温度和其他实验条件不变,采用选择性膜技术,乙烷转化率可提高到。结合具体反应说明乙烷转化率增大的原因是_____。
4.[2020年山东新高考]探究CH3OH合成反应化学平衡的影响因素,有利于提高CH3OH的产率。以CO2、H2为原料合成CH3OH涉及的主要反应如下:
Ⅰ.
Ⅱ.
Ⅲ.
回答下列问题:
(1)。
(2)一定条件下,向体积为VL的恒容密闭容器中通入1 mol CO2和3 mol H2发生上述反应,达到平衡时,容器中CH3OH(g)为ɑ mol,CO为b mol,此时H2O(g)的浓度为 mol﹒L 1(用含a、b、V的代数式表示,下同),反应Ⅲ的平衡常数为 。
(3)不同压强下,按照n(CO2):n(H2)=1:3投料,实验测定CO2的平衡转化率和CH3OH的平衡产率随温度的变化关系如下图所示。
已知:CO2的平衡转化率=
CH3OH的平衡产率=
其中纵坐标表示CO2平衡转化率的是图 (填“甲”或“乙”);压强p1、p2、p3由大到小的顺序为 ;图乙中T1温度时,三条曲线几乎交于一点的原因是 。
(4)为同时提高CO2的平衡转化率和CH3OH的平衡产率,应选择的反应条件为 (填标号)。
A.低温、高压 B.高温、低压 C.低温、低压 D.高温、高压
五年真题
2024
2023
2022
2021
2020
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题15 化学反应原理综合题
1. (2024·广东卷)酸在多种反应中具有广泛应用,其性能通常与酸的强度密切相关。
(1)酸催化下与混合溶液的反应(反应a),可用于石油开采中油路解堵。
①基态N原子价层电子的轨道表示式为_______。
②反应a:
已知:
则反应a的_______。
③某小组研究了3种酸对反应a的催化作用。在相同条件下,向反应体系中滴加等物质的量的少量酸,测得体系的温度T随时间t的变化如图。
据图可知,在该过程中_______。
A.催化剂酸性增强,可增大反应焓变
B.催化剂酸性增强,有利于提高反应速率
C.催化剂分子中含H越多,越有利于加速反应
D.反应速率并不始终随着反应物浓度下降而减小
(2)在非水溶剂中,将转化为化合物ⅱ(一种重要的电子化学品)的催化机理示意图如图,其中的催化剂有_______和_______。
(3)在非水溶剂中研究弱酸的电离平衡具有重要科学价值。一定温度下,某研究组通过分光光度法测定了两种一元弱酸(X为A或B)在某非水溶剂中的。
a.选择合适的指示剂其钾盐为,;其钾盐为。
b.向溶液中加入,发生反应:。起始的物质的量为,加入的物质的量为,平衡时,测得随的变化曲线如图。
已知:该溶剂本身不电离,钾盐在该溶剂中完全电离。
①计算_______。(写出计算过程,结果保留两位有效数字)
②在该溶剂中,_______;_______。(填“>”“<”或“=”)
【答案】(1) ①. ②. ③. BD
(2) ①. AcOH ②. KI
(3) ①. ②. > ③. >
【解析】
【小问1详解】
①N的原子序数为7,位于第二周期第ⅤA族,基态N原子价层电子的轨道表示式为;
②由已知可得:
Ⅰ.,;
Ⅱ.,;
Ⅲ.,;
Ⅳ.,;
由盖斯定律可知,目标方程式可由方程式Ⅰ-Ⅱ-Ⅲ+Ⅳ得到,故反应;
③A.催化剂不能改变反应的焓变,A项错误;
B.由图示可知,酸性:硫酸>磷酸>乙酸,催化剂酸性增强,反应速率提高,B项正确;
C.一个硫酸分子中含有2个H,一个磷酸分子中含有3个H,一个乙酸分子中含有4个H,但含H最少的硫酸催化时,最有利于加速反应,C项错误;
D.由图示可知,反应开始一段时间,反应物浓度减小,但反应速率加快,反应速率并不始终随着反应物浓度下降而减小,D项正确;
故选BD。
【小问2详解】
催化剂参与化学反应,但反应前后质量和化学性质并未改变,由催化机理示意图可知,催化剂有AcOH和KI;
【小问3详解】
由变化曲线图可知,当时,,设初始,则初始,转化的物质的量浓度为,可列出三段式如下:
由,即,解得,则该反应的平衡常数为
解得;
②根据图像可知,当时,设此时转化的物质的量浓度为,可列出三段式如下:
此时,即,则,则平衡常数,则;
由于,则,。
2.(2024·北京卷) 是一种重要的工业原料。可采用不同的氮源制备。
(1)方法一:早期以硝石(含)为氮源制备,反应的化学方程式为:。该反应利用了浓硫酸的性质是酸性和_________。
(2)方法二:以为氮源催化氧化制备,反应原理分三步进行。
①第I步反应的化学方程式为___________________________。
②针对第Ⅱ步反应进行研究:在容积可变的密闭容器中,充入和进行反应。在不同压强下(、),反应达到平衡时,测得转化率随温度的变化如图所示。解释y点的容器容积小于x点的容器容积的原因_________________________________________________________。
(3)方法三:研究表明可以用电解法以为氨源直接制备,其原理示意图如下。
①电极a表面生成的电极反应式:__________________。
②研究发现:转化可能的途径为。电极a表面还发生iii.。iii的存在,有利于途径ii,原因是________________________________________________。
(4)人工固氮是高能耗的过程,结合分子结构解释原因___________________________。方法三为的直接利用提供了一种新的思路。
【答案】(1)难挥发性
(2)①
②,该反应正向气体分子总数减小,同温时,条件下转化率高于,故,x、y点转化率相同,此时压强对容积的影响大于温度对容积的影响
(3)①
②反应iii生成,将氧化成,更易转化成
(4)中存在氨氮三键,键能高,断键时需要较大的能量,故人工固氮是高能耗的过程
【解析】(1)(浓)难挥发,产物为气体,有利于复分解反应进行,体现了(浓)的难挥发性和酸性。(2)①第I步反应为氨气的催化氧化,化学方程式为。
(3)①由电极a上的物质转化可知,电极a为阳极,电极反应式为。
3. (2024·甘肃卷)是制备半导体材料硅的重要原料,可由不同途径制备。
(1)由制备:
已知
时,由制备硅_______(填“吸”或“放”)热_______。升高温度有利于制备硅的原因是_______。
(2)在催化剂作用下由粗硅制备:。,密闭容器中,经不同方式处理的粗硅和催化剂混合物与和气体反应,转化率随时间的变化如下图所示:
①,经方式_______处理后的反应速率最快;在此期间,经方式丙处理后的平均反应速率_______。
②当反应达平衡时,的浓度为_______,平衡常数K的计算式为_______。
③增大容器体积,反应平衡向_______移动。
【答案】(1) ①. 吸 ②. 587.02 ③. 该反应为吸热反应,升高温度,反应正向移动,有利于制备硅
(2) ① 甲 ②. ③. 0.1952 ④. ⑤. 逆反应方向
【解析】
【小问1详解】
由题给热化学方程式:①,;②,;则根据盖斯定律可知,①+②,可得热化学方程式,,则制备56gSi,即2molSi,需要吸收热量为;该反应为吸热反应,升高温度,反应正向移动,有利于制备硅。
【小问2详解】
①由转化率图像可知,0-50min,经方式甲处理后反应速率最快;经方式丙处理后,50min时SiCl4的转化率为4.2%,反应的SiCl4的物质的量为0.1mol×4.2%=0.0042mol,根据化学化学计量数可得反应生成的SiHCl3的物质的量为,平均反应速率;
②反应达到平衡时,SiCl4的转化率为14.6%,列出三段式为:
当反应达平衡时,H2的浓度为,平衡常数K的计算式为;
③增大容器体积,压强减小,平衡向气体体积增大的方向移动,即反应平衡向逆反应方向移动。
4. (2024·湖南卷)丙烯腈()是一种重要的化工原料。工业上以为载气,用作催化剂生产的流程如下:
已知:①进料混合气进入两釜的流量恒定,两釜中反应温度恒定:
②反应釜Ⅰ中发生的反应:
ⅰ:
③反应釜Ⅱ中发生的反应:
ⅱ:
ⅲ:
④在此生产条件下,酯类物质可能发生水解。
回答下列问题:
(1)总反应 _______(用含、、和的代数式表示);
(2)进料混合气中,出料中四种物质(、、、)的流量,(单位时间内出料口流出的物质的量)随时间变化关系如图:
①表示的曲线是_______(填“a”“b”或“c”);
②反应釜Ⅰ中加入的作用是_______。
③出料中没有检测到的原因是_______。
④反应后,a、b、c曲线对应物质的流量逐渐降低的原因是_______。
(3)催化剂再生时会释放,可用氨水吸收获得。现将一定量的固体(含水)置于密闭真空容器中,充入和,其中的分压为,在℃下进行干燥。为保证不分解,的分压应不低于_______(已知 分解的平衡常数);
(4)以为原料,稀硫酸为电解液,Sn作阴极,用电解的方法可制得,其阴极反应式_______。
【答案】(1)ΔH1+ΔH2+ΔH3
(2) ①. c ②. 降低分压有利于反应i平衡正向移动且提高醇的浓度可以使酯的水解程度降低从而提高产率 ③. CH2=CHCONH2在反应釜Ⅱ的温度下发生分解 ④. 反应时间过长,催化剂中毒活性降低,反应速率降低,故产物减少 (3)40
(4)Sn+4CH2=CHCN+4e-+4H+=Sn(CH2CH2CN)4
【解析】
【分析】工业上以N2为载气,用TiO2作催化剂,由HOCH2CH2COOC2H5和C2H5OH为进料气体生产CH2=CHCN,在反应釜I中发生反应i:HOCH2CH2COOC2H5(g)→CH2=CHCOOC2H5(g)+H2O(g),加入NH3后,在反应釜Ⅱ中发生反应ii:CH2=CHCOOC2H5(g)+NH3(g)→CH2=CHCONH2(g)+C2H5OH(g),反应iii:CH2=CHCONH2(g)→CH2=CHCN(g)+H2O(g),故产物的混合气体中有CH2=CHCN、未反应完的C2H5OH、CH2=CHCOOC2H5(g)和水;
【小问1详解】
根据盖斯定律,总反应HOCH2CH2COOC2H5(g)+NH3(g)→CH2=CHCN(g)+C2H5OH(g)+2H2O(g)可以由反应i+反应ii+反应iii得到,故ΔH=ΔH1+ΔH2+ΔH3;
【小问2详解】
①根据总反应HOCH2CH2COOC2H5(g)+NH3(g)→CH2=CHCN(g)+C2H5OH(g)+2H2O(g),设进料混合气中n(HOCH2CH2COOC2H5)=1mol,n(C2H5OH)=2mol,出料气中CH2=CHCOOC2H5含量很少,则生成CH2=CHCN(g)、C2H5OH(g)物质的量约为1mol,生成H2O(g)的物质的量约为2mol,故出料气中C2H5OH(g)物质的量共约3mol,故出料气中CH2=CHCN、C2H5OH、H2O物质的量之比约为1:3:2,故曲线c表示CH2=CHCN的曲线;
②反应釜Ⅰ中发生反应i是气体体积增大的反应,故加入C2H5OH降低分压有利于反应i平衡正向移动且提高醇的浓度可以使酯的水解程度降低从而提高产率;
③丙烯酰胺(CH2=CHCONH2)的分解温度约为160°C至170°C,出料中没有检测到CH2=CHCONH2的原因是CH2=CHCONH2在反应釜Ⅱ的温度下发生分解;
④反应11h后,a、b、c曲线对应物质的流量逐渐降低的原因是反应时间过长,催化剂中毒活性降低,反应速率降低,故产物减少;
【小问3详解】
0.72g水的物质的量为0.04mol,故p(H2O)=2.5×102kPa mol 1×n(H2O)=10kPa,NH4HCO3分解的反应式为NH4HCO3=NH3↑+CO2↑+H2O↑,故NH4HCO3分解的平衡常数Kp=p(NH3)p(CO2)p(H2O)=4×104(kPa)3,解得p(NH3)=40kPa,故为保证NH4HCO3不分解,NH3的分压应不低于40kPa;
【小问4详解】
Sn(CH2CH2CN)4是有机化合物,与水不溶,水中不电离,以CH2=CHCN为原料在Sn做的阴极得电子制得Sn(CH2CH2CN)4,故阴极的电极反应式为Sn+4CH2=CHCN+4e-+4H+=Sn(CH2CH2CN)4。
5. (2024·浙江卷6月)氢是清洁能源,硼氢化钠()是一种环境友好的固体储氢材料,其水解生氢反应方程式如下:(除非特别说明,本题中反应条件均为,)
请回答:
(1)该反应能自发进行的条件是_______。
A. 高温 B. 低温 C. 任意温度 D. 无法判断
(2)该反应比较缓慢。忽略体积变化的影响,下列措施中可加快反应速率的是_______。
A. 升高溶液温度 B. 加入少量异丙胺
C. 加入少量固体硼酸 D. 增大体系压强
(3)为加速水解,某研究小组开发了一种水溶性催化剂,当该催化剂足量、浓度一定且活性不变时,测得反应开始时生氢速率v与投料比之间的关系,结果如图1所示。请解释ab段变化的原因_______。
(4)氢能的高效利用途径之一是在燃料电池中产生电能。某研究小组的自制熔融碳酸盐燃料电池工作原理如图2所示,正极上的电极反应式是_______。该电池以恒定电流工作14分钟,消耗体积为,故可测得该电池将化学能转化为电能的转化率为_______。[已知:该条件下的摩尔体积为;电荷量电流时间;;。]
(5)资源的再利用和再循环有利于人类的可持续发展。选用如下方程式,可以设计能自发进行的多种制备方法,将反应副产物偏硼酸钠()再生为。(已知:是反应的自由能变化量,其计算方法也遵循盖斯定律,可类比计算方法;当时,反应能自发进行。)
I.
II.
III.
请书写一个方程式表示再生为的一种制备方法,并注明_______。(要求:反应物不超过三种物质;氢原子利用率为。)
【答案】(1)C (2)A
(3)随着投料比增大,NaBH4的水解转化率降低
(4) ①. O2+4e-+2CO2=2 ②. 70%
(5)
【解析】
【小问1详解】
反应, ,由可知,任意温度下,该反应均能自发进行,故答案选C;
【小问2详解】
A.升高温度,活化分子数增多,有效碰撞几率增大,反应速率加快,A符合题意;
B.加入少量异丙胺,H2O的量减少,化学反应速率降低,B不符合题意;
C. 加入少量固体硼酸,H2O的量减少,化学反应速率降低,C不符合题意;
D.增大体系压强,忽略体积变化,则气体浓度不变,化学反应速率不变,D不符合题意;
答案选A。
【小问3详解】
随着投料比增大,NaBH4的水解转化率降低,因此生成氢气的速率不断减小。
【小问4详解】
根据题干信息,该燃料电池中H2为负极,O2为正极,熔融碳酸盐为电解质溶液,故正极的电极反应式为:O2+4e-+2CO2=2, 该条件下,0.49L H2的物质的量为,工作时,H2失去电子:H2-2e-=2H+,所带电荷量为:2×0.02mol×6.0×1023mol-1×1.60×10-19= 3840C,工作电荷量为:3.2×14×60=2688C,则该电池将化学能转化为电能的转化率为:;
【小问5详解】
结合题干信息,要使得氢原子利用率为100%,可由(2×反应3)-(2×反应Ⅱ+反应Ⅰ)得, 。
6. (2024·江苏卷)氢能是理想清洁能源,氢能产业链由制氢、储氢和用氢组成。
(1)利用铁及其氧化物循环制氢,原理如图所示。反应器Ⅰ中化合价发生改变的元素有_______;含CO和各1mol的混合气体通过该方法制氢,理论上可获得_______。
(2)一定条件下,将氮气和氢气按混合匀速通入合成塔,发生反应。海绵状的作催化剂,多孔作为的“骨架”和气体吸附剂。
①中含有CO会使催化剂中毒。和氨水的混合溶液能吸收CO生成溶液,该反应的化学方程式为_______。
②含量与表面积、出口处氨含量关系如图所示。含量大于,出口处氨含量下降的原因是_______。
(3)反应可用于储氢。
①密闭容器中,其他条件不变,向含有催化剂的溶液中通入,产率随温度变化如图所示。温度高于,产率下降的可能原因是_______。
②使用含氨基物质(化学式为,CN是一种碳衍生材料)联合催化剂储氢,可能机理如图所示。氨基能将控制在催化剂表面,其原理是_______;用重氢气(D2)代替H2,通过检测是否存在_______(填化学式)确认反应过程中的加氢方式。
【答案】(1) ①. C、H、Fe ②.
(2) ①. ②. 多孔 Al2O3可作为气体吸附剂,含量过多会吸附生成的NH3,Al2O3含量大于2%时,α-Fe表面积减小,反应速率减小,产生NH3减少。
(3) ①. NaHCO3受热分解,导致HCOO-产率下降 ②. -NH2可以与形成氢键 ③. HDO
【解析】
【小问1详解】
①反应器I中参与反应的物质有CO、H2、Fe2O3,产物有 CO2、H2O、Fe,发生反应、化合价发生改变的元素有 C、H、Fe。
②CO、H2各1 mol参与上述反应,各生成mol Fe,共生成molFe,molFe在反应器Ⅱ中发生反应,列比例计算,共生成mol H 。
【小问2详解】
①根据题给反应物及生成物书写即可。②多孔 Al2O3可作为气体吸附剂,含量过多会吸附生成的NH3,Al2O3含量大于2%时,α-Fe表面积减小,反应速率减小,这也会导致产生的NH3减少。
【小问3详解】
①NaHCO3受热易分解,导致HCOO-产率下降。②氨基中的H原子连在电负性较大的N原子上,中的H原子连在电负性较大的O原子上,二者之间可以形成氢键③总反应为,用D2代替H2,若生成 HDO,则可确认反应过程中的加氢方式。
7. (2024·河北卷)氯气是一种重要的基础化工原料,广泛应用于含氯化工产品的生产。硫酰氯及1,4-二(氯甲基)苯等可通过氯化反应制备。
(1)硫酰氯常用作氯化剂和氯磺化剂,工业上制备原理如下:。
①若正反应活化能为,则逆反应的活化能_______(用含正的代数式表示)。
②恒容密闭容器中按不同进料比充入和其,测定温度下体系达平衡时的(为体系初始压强,,P为体系平衡压强),结果如图。
上图中温度由高到低的顺序为_______,判断依据为_______。M点的转化率为_______,温度下用分压表示的平衡常数_______。
③下图曲线中能准确表示温度下随进料比变化的是_______(填序号)。
(2)1,4-二(氯甲基)苯(D)是有机合成中的重要中间体,可由对二甲苯(X)的氯化反应合成。对二甲苯浅度氯化时反应过程为
以上各反应的速率方程均可表示为,其中分别为各反应中对应反应物的浓度,k为速率常数(分别对应反应①~⑤)。某温度下,反应器中加入一定量的X,保持体系中氯气浓度恒定(反应体系体积变化忽略不计),测定不同时刻相关物质的浓度。已知该温度下,。
①时,,且内,反应进行到时,_______。
②时,,若产物T的含量可忽略不计,则此时_______后,随T的含量增加,_______(填“增大”“减小”或“不变”)。
【答案】(1) ①. ②. ③. 该反应正反应放热,且气体分子数减小,反应正向进行时,容器内压强减小,从到平衡时增大,说明反应正向进行程度逐渐增大,对应温度逐渐降低 ④. ⑤. 0.03 ⑥. D
(2) ①. 5.54 ②. 0.033 ③. 增大
【解析】
【小问1详解】
①根据反应热与活化能E正和E逆关系为正反应活化能-逆反应活化能可知,该反应的。
②该反应的正反应为气体体积减小的反应,因此反应正向进行程度越大,平衡时容器内压强越小,即越大。从到,增大,说明反应正向进行程度逐渐增大,已知正反应为放热反应,则温度由到逐渐降低,即。由题图甲中M点可知,进料比为,平衡时,已知恒温恒容情况下,容器内气体物质的量之比等于压强之比,可据此列出“三段式”。
可计算得,。
③由题图甲中M点可知,进料比为2时,,结合“三段式”,以及时化学平衡常数可知,进料比为0.5时,也为,曲线D上存在(0.5,60)。本题也可以快解:根据“等效平衡”原理,该反应中和的化学计量数之比为,则和的进料比互为倒数(如2与0.5)时,相等。
【小问2详解】
①根据化学反应速率的计算公式时,,时,。
②已知,又由题给反应速率方程推知,,则,即后。后,D和G转化为T的速率比为,G消耗得更快,则增大。
8. (2024·山东卷)水煤气是的主要来源,研究对体系制的影响,涉及主要反应如下:
回答列问题:
(1)的焓变_______(用代数式表示)。
(2)压力p下,体系达平衡后,图示温度范围内已完全反应,在温度时完全分解。气相中,和摩尔分数随温度的变化关系如图所示,则a线对应物种为_______(填化学式)。当温度高于时,随温度升高c线对应物种摩尔分数逐渐降低的原因是_______。
(3)压力p下、温度为时,图示三种气体的摩尔分数分别为0.50,0.15,0.05,则反应的平衡常数_______;此时气体总物质的量为,则的物质的量为_______;若向平衡体系中通入少量,重新达平衡后,分压将_______(填“增大”“减小”或“不变”),将_______(填“增大”“减小”或“不变”)。
【答案】(1)++
(2) ①. ②. 当温度高于T1,已完全分解,只发生反应Ⅱ,温度升高,反应Ⅱ逆向移动,所以的摩尔分数减小。
(3) ①. ②. 0.5 ③. 不变 ④. 增大
【解析】
【小问1详解】
已知三个反应:
Ⅰ.
Ⅱ.
Ⅲ.
设目标反应为Ⅳ,根据盖斯定律,Ⅳ=Ⅰ+Ⅱ+Ⅲ,所以++。
【小问2详解】
图示温度范围内已完全反应,则反应Ⅰ已经进行完全,反应Ⅱ和Ⅲ均为放热反应,从开始到T1,温度不断升高,反应Ⅱ和Ⅲ逆向移动,依据反应Ⅱ,量减小,摩尔分数减小,量升高,摩尔分数,且二者摩尔分数变化斜率相同,所以a曲线代表的摩尔分数的变化,则c曲线代表的摩尔分数随温度的变化,开始到T1,的摩尔分数升高,说明在这段温度范围内,反应Ⅲ占主导,当温度高于T1,已完全分解,只发生反应Ⅱ,所以的摩尔分数减小。
【小问3详解】
①压力p下、温度为时,、、和摩尔分数分别为0.50、0.15、0.05,则H2O(g)的摩尔分数为:,则反应的平衡常数 ;
②设起始状态1molC(s),xmolH2O(g),反应Ⅰ进行完全。
则依据三段式:
根据平衡时、、和摩尔分数分别为0.50、0.15、0.05,则有、、,解出,,则,而由于平衡时n(总)=4mol,则y=4,y=,则n(CaCO3)= ==0.5。
③若向平衡体系中通入少量,重新达平衡后,反应的Kp=,温度不变,Kp不变,则分压不变,但体系中增加了,反应Ⅱ逆向移动,所以增大。
9. (2024·新课标卷)Ni(CO)4(四羰合镍,沸点43℃)可用于制备高纯镍,也是有机化合物羰基化反应的催化剂。回答下列问题:
(1)Ni基态原子价电子的轨道表示式为_______。镍的晶胞结构类型与铜的相同,晶胞体积为,镍原子半径为_______。
(2)结构如图甲所示,其中含有σ键数目为_______,晶体的类型为_______。
(3)在总压分别为0.10、0.50、1.0、2.0MPa下,Ni(s)和CO(g)反应达平衡时,体积分数x与温度的关系如图乙所示。反应的ΔH_______0(填“大于”或“小于”)。从热力学角度考虑,_______有利于的生成(写出两点)。、100℃时CO的平衡转化率α=_______,该温度下平衡常数_______。
(4)对于同位素交换反应,20℃时反应物浓度随时间的变化关系为(k为反应速率常数),则反应一半所需时间_______(用k表示)。
【答案】(1) ①. ②.
(2) ①. 8 ②. 分子晶体
(3) ①. 小于 ②. 降低温度、增大压强 ③. 97.3% ④. 9000
(4)
【解析】
【小问1详解】
Ni为28号元素,其基态原子的核外电子排布式为,则其价电子轨道表示式为;铜晶胞示意图为,镍的晶胞结构类型与铜的相同,则镍原子半径为晶胞面对角线长度的,因为晶胞体积为,所以晶胞棱长为a,面对角线长度为,则镍原子半径为。
【小问2详解】
单键均为σ键,双键含有1个σ键和1个π键,三键含有1个σ键2个π键,由的结构可知,4个配体CO与中心原子Ni形成的4个配位键均为σ键,而每个配体CO中含有1个σ键2个π键,因此1个分子中含有8个σ键。的沸点很低,结合其结构可知该物质由分子构成,因此其晶体类型为分子晶体。
【小问3详解】
随着温度升高,平衡时的体积分数减小,说明温度升高平衡逆移,因此该反应的;该反应的正反应是气体总分子数减小的放热反应,因此降低温度和增大压强均有利于的生成;由上述分析知,温度相同时,增大压强平衡正向移动,对应的平衡体系中的体积分数增大,则压强:,即对应的压强是1.0MPa.由题图乙可知,、100℃条件下达到平衡时,CO和的物质的量分数分别为0.1、0.9,设初始投入的CO为4mol,反应生成的为xmol,可得三段式:
,反应后总物质的量为:(4-3x)mol,根据阿伏加德罗定律,其他条件相同时,气体的体积分数即为其物质的量分数,因此有,解得,因此达到平衡时,CO的平衡转化率;气体的分压=总压强×该气体的物质的量分数,则该温度下的压强平衡常数。
【小问4详解】
由题给关系式可得,当反应一半时,即,,,则。
10. (2024·全国甲卷)甲烷转化为多碳化合物具有重要意义。一种将甲烷溴化再偶联为丙烯()的研究所获得的部分数据如下。回答下列问题:
(1)已知如下热化学方程式:
计算反应的_____。
(2)与反应生成,部分会进一步溴化。将和。通入密闭容器,平衡时,、与温度的关系见下图(假设反应后的含碳物质只有、和)。
(i)图中的曲线是_____(填“a”或“b”)。
(ii)时,的转化_____,_____。
(iii)时,反应的平衡常数_____。
(3)少量可提高生成的选择性。时,分别在有和无的条件下,将和,通入密闭容器,溴代甲烷的物质的量(n)随时间(t)的变化关系见下图。
(i)在之间,有和无时的生成速率之比_____。
(ii)从图中找出提高了选择性的证据:_____。
(ⅲ)研究表明,参与反应的可能机理如下:
①
②
③
④
⑤
⑥
根据上述机理,分析提高选择性的原因:_____。
【答案】(1)-67
(2) a 80% 7.8 10.92
(3) (或3:2) 5s以后有I2催化的CH2Br2的含量逐渐降低,有I2催化的CH3Br的含量陡然上升 I2的投入消耗了部分CH2Br2,使得消耗的CH2Br2发生反应生成了CH3Br
【分析】根据盖斯定律计算化学反应热;根据影响化学反应速率的因素判断还行反应进行的方向从而判断曲线归属;根据反应前后的变化量计算转化率;根据平衡时各物质的物质的量计算平衡常数;根据一段时间内物质的含量变化计算速率并计算速率比;根据图示信息和反应机理判断合适的原因。
【解析】(1)将第一个热化学方程式命名为①,将第二个热化学方程式命名为②。根据盖斯定律,将方程式①乘以3再加上方程式②,即①×3+②,故热化学方程式3CH4(g)+3Br2(g)=C3H6(g)+6HBr(g)的 H=-29×3+20=-67kJ·mol-1。
(2)(i)根据方程式①,升高温度,反应向吸热反应方向移动,升高温度,平衡逆向移动,CH4(g)的含量增多,CH3Br(g)的含量减少,故CH3Br的曲线为a;
(ii)560℃时反应达平衡,剩余的CH4(g)的物质的量为1.6mmol,其转化率α=×100%=80%;若只发生一步反应,则生成6.4mmol CH3Br,但此时剩余CH3Br的物质的量为5.0mmol,说明还有1.4mmol CH3Br发生反应生成CH2Br2,则此时生成的HBr的物质的量n=6.4+1.4=7.8mmol;
(iii)平衡时,反应中各组分的物质的量分别为n(CH3Br)=5.0mmol、n(Br2)=0.2mmol、n(CH2Br2)=1.4mmol、n(HBr)=7.8mmol,故该反应的平衡常数K===10.92。
(3)(i)11~19s时,有I2的生成速率v==mmol·(L·s)-1,无I2的生成速率v==mmol·(L·s)-1。生成速率比==;
(ii)从图中可以看出,大约4.5s以后有I2催化的CH2Br2的含量逐渐降低,有I2催化的CH3Br的含量陡然上升,因此,可以利用此变化判断I2提高了CH3Br的选择性;
(iii)根据反应机理,I2的投入消耗了部分CH2Br2,同时也消耗了部分HBr,使得消耗的CH2Br2发生反应生成了CH3Br,提高了CH3Br的选择性。
11. (2024·湖北卷)用和焦炭为原料,经反应I、Ⅱ得到,再制备乙炔是我国科研人员提出的绿色环保新路线。
反应I:
反应Ⅱ:
回答下列问题:
(1)写出与水反应的化学方程式_______。
(2)已知、(n是的化学计量系数)。反应、Ⅱ的与温度的关系曲线见图1。
①反应在的_______。
②保持不变,假定恒容容器中只发生反应I,达到平衡时_______,若将容器体积压缩到原来的,重新建立平衡后_______。
(3)恒压容器中,焦炭与的物质的量之比为,为载气。和下,产率随时间的关系曲线依实验数据拟合得到图2(不考虑接触面积的影响)。
①初始温度为,缓慢加热至时,实验表明已全部消耗,此时反应体系中含物种为_______。
②下,反应速率的变化特点为_______,其原因是_______。
【答案】(1)BaC2+2H2O→Ba(OH)2+HC≡CH↑
(2) ①. 1016 ②. 105 ③. 105
(3) ①. BaO ②. 速率不变至BaC2产率接近100% ③. 容器中只有反应Ⅱ:BaO(s)+3C(s) BaC2(s)+CO(g),反应条件恒温1823K、恒压,且该反应只有CO为气态,据可知,CO的压强为定值,所以化学反应速率不变
【解析】
【小问1详解】
Ba、Ca元素同主族,所以BaC2与水的反应和CaC2与水的反应相似,其反应的化学方程式为BaC2+2H2O→Ba(OH)2+HC≡CH↑;
【小问2详解】
①反应I+反应Ⅱ得BaCO3(s)+4C(s)BaC2(s)+3CO(g),所以其平衡常数K=KI×KⅡ=,由图1可知,1585K时KI=102.5,KⅡ=10-1.5,即=102.5×10-1.5=10,所以p3CO=10×(105pa)3=1016pa3,则Kp= p3CO=1016pa3;
②由图1可知,1320K时反应I的KI=100=1,即KI==1,所以p2CO=(105pa)2,即pCO=105pa;
③若将容器体积压缩到原来的,由于温度不变、平衡常数不变,重新建立平衡后pCO应不变,即pCO=105pa;
【小问3详解】
①由图2可知,1400K时,BaC2的产率为0,即没有BaC2,又实验表明BaBO3已全部消耗,所以此时反应体系中含Ba物种为BaO;
②图像显示,1823K时BaC2的产率随时间由0开始呈直线增加到接近100%,说明该反应速率为一个定值,即速率保持不变;1400K时碳酸钡已全部消耗,此时反应体系的含钡物种只有氧化钡,即只有反应Ⅱ:BaO(s)+3C(s) BaC2(s)+CO(g),反应条件恒温1823K、恒压,且该反应只有CO为气态,据可知,CO的压强为定值,所以化学反应速率不变。
12. (2024·黑吉辽卷)为实现氯资源循环利用,工业上采用催化氧化法处理废气:。将和分别以不同起始流速通入反应器中,在和下反应,通过检测流出气成分绘制转化率()曲线,如下图所示(较低流速下转化率可近似为平衡转化率)。
回答下列问题:
(1)_______0(填“>”或“<”);_______℃。
(2)结合以下信息,可知的燃烧热_______。
(3)下列措施可提高M点转化率的是_______(填标号)
A. 增大的流速 B. 将温度升高
C. 增大 D. 使用更高效的催化剂
(4)图中较高流速时,小于和,原因是_______。
(5)设N点的转化率为平衡转化率,则该温度下反应的平衡常数_______(用平衡物质的量分数代替平衡浓度计算)
(6)负载在上的催化活性高,稳定性强,和的晶体结构均可用下图表示,二者晶胞体积近似相等,与的密度比为1.66,则的相对原子质量为_______(精确至1)。
【答案】(1) ①. < ②. 360℃
(2)-258.8 (3)BD
(4)流速过快,反应物分子来不及在催化剂表面接触而发生反应,导致转化率下降,同时,T3温度低,反应速率低,故单位时间内氯化氢的转化率低。
(5)6 (6)101
【解析】
【小问1详解】
反应前后的气体分子数目在减小,所以该反应 <0,该反应为放热反应,由于在流速较低时的转化率视为平衡转化率,所以在流速低的时候,温度越高,HCl的转化率越小,故T1代表的温度为440℃,T3为360℃。
【小问2详解】
表示氢气燃烧热热化学方程式为④,设①,②,③ ,则,因此氢气的燃烧热-57.2kJ/mol-184.6kJ/mol-44kJ/mol=-258.8
【小问3详解】
A.增大HCl的流速,由图像可知,HCl的转化率在减小,不符合题意;
B.M对应温度为360℃,由图像可知,升高温度,HCl的转化率增大,符合题意;
C.增大n(HCl):n(O2),HCl的转化率减小,不符合题意;
D.使用高效催化剂,可以增加该温度下的反应速率,使单位时间内HCl的转化率增加,符合题意;
故选BD。
【小问4详解】
图中在较高流速下,T3温度下的转化率低于温度较高的T1和T2,主要是流速过快,反应物分子来不及在催化剂表面接触而发生反应,导致转化率下降,同时,T3温度低,反应速率低,故单位时间内氯化氢的转化率低。
【小问5详解】
由图像可知,N点HCl的平衡转化率为80%,设起始n(HCl)=n(O2)=4mol,可列出三段式
则。
【小问6详解】
由于二者的晶体结构相似,体积近似相等,则其密度之比等于摩尔质量之比。故,则Ru的相对原子质量为101。
13. (2024·浙江卷1月)通过电化学、热化学等方法,将转化为等化学品,是实现“双碳”目标的途径之一。请回答:
(1)某研究小组采用电化学方法将转化为,装置如图。电极B上的电极反应式是_______。
(2)该研究小组改用热化学方法,相关热化学方程式如下:
:
Ⅱ:
Ⅲ:
①_______。
②反应Ⅲ在恒温、恒容的密闭容器中进行,和的投料浓度均为,平衡常数,则的平衡转化率为_______。
③用氨水吸收,得到氨水和甲酸铵的混合溶液,时该混合溶液的_______。[已知:时,电离常数、]
(3)为提高效率,该研究小组参考文献优化热化学方法,在如图密闭装置中充分搅拌催化剂M的(有机溶剂)溶液,和在溶液中反应制备,反应过程中保持和的压强不变,总反应的反应速率为v,反应机理如下列三个基元反应,各反应的活化能(不考虑催化剂活性降低或丧失)。
Ⅳ:
V:
VI:
①催化剂M足量条件下,下列说法正确的是_______。
A.v与的压强无关 B.v与溶液中溶解的浓度无关
C.温度升高,v不一定增大 D.在溶液中加入,可提高转化率
②实验测得:,下,v随催化剂M浓度c变化如图。时,v随c增大而增大:时,v不再显著增大。请解释原因_______。
【答案】(1)
(2) ①. +14.8 ②. 2.4×10 8 ③. 10.00
(3) ①. CD ②. 当c≤c0时,v随c增大而增大,因M是基元反应IV的反应物(直接影 响基元反应VI中反应物L的生成); c>c0时,v不再显著增加,因受限 于CO2(g)和H2 (g)在溶液中的溶解速度(或浓度)
【解析】
【小问1详解】
①电极B是阴极,则电极反应式是;
【小问2详解】
①ΔH3= ΔH2 -ΔH1=-378 .7 kJ /mol+393 .5 kJ/mol =+14.8 kJ/ mol;
②根据三段式,设转化的CO2为x,则:
,则,,则转化率= ;
③用氨水吸收HCOOH,得到1.00 mol L-1氨水和0.18 mol L-1甲酸铵的混合溶液,得出=0.18mol/L, 根据,则,,;
【小问3详解】
①A.v与CO2(g)的压强有关,压强越大,溶液中CO2的浓度越大,v越大,A错误;
B.v与溶液中溶解H2的浓度有关,氢气浓度越大,速率越快,B错误;
C.温度升高,v不一定增大,反应Ⅳ和Ⅴ是快反应,而Ⅵ是慢反应(决速步骤),若Ⅳ和Ⅴ是放热反应且可以快速建立平衡状态,则随着温度升高L的浓度减小,若L的浓度减小对反应速率的影响大于温度升高对总反应速率的影响,则总反应速率减小 ,故总反应的速率不一定增大,C错误;
D.在溶液中加入的N(CH2CH3)3会与HCOOH反应,使得三个平衡正向移动,可提高CO2转化率,D正确;
故选CD。
②当c≤c0时,v随c增大而增大,因M是基元反应IV的反应物(直接影 响基元反应VI中反应物L的生成); c>c0时,v不再显著增加,因受限 于CO2(g)和H2 (g)在溶液中的溶解速度(或浓度)。
14. (2024·安徽卷)乙烯是一种用途广泛的有机化工原料。由乙烷制乙烯的研究备受关注。回答下列问题:
【乙烷制乙烯】
(1)氧化脱氢反应:
计算: _______
(2)直接脱氢反应为,的平衡转化率与温度和压强的关系如图所示,则_______0(填“>”“<”或“=”)。结合下图。下列条件中,达到平衡时转化率最接近的是_______(填标号)。
a. b. c.
(3)一定温度和压强下、反应i
反应ⅱ (远大于)(是以平衡物质的量分数代替平衡浓度计算的平衡常数)
①仅发生反应i时。的平衡转化宰为,计算_______。
②同时发生反应i和ⅱ时。与仅发生反应i相比,的平衡产率_______(填“增大”“减小”或“不变”)。
【乙烷和乙烯混合气的分离】
(4)通过修饰的Y分子筛的吸附-脱附。可实现和混合气的分离。的_______与分子的键电子形成配位键,这种配位键强弱介于范德华力和共价键之间。用该分子筛分离和的优点是_______。
(5)常温常压下,将和等体积混合,以一定流速通过某吸附剂。测得两种气体出口浓度(c)与进口浓度()之比随时间变化关系如图所示。下列推断合理的是_______(填标号)。
A.前,两种气体均未被吸附
B.p点对应的时刻,出口气体的主要成分是
C.a-b对应的时间段内,吸附的逐新被替代
【答案】(1)-566
(2) ①. > ②. b
(3) ①. ②. 增大
(4) ①. 4s空轨道 ②. 识别度高,能有效将C2H4和C2H6分离,分离出的产物中杂质少,纯度较高
(5)BC
【解析】
【小问1详解】
将两个反应依次标号为反应①和反应②,反应①-反应②×2可得目标反应,则ΔH3=ΔH1-2ΔH2=(-209.8-178.1×2)kJ/mol=-566kJ/mol。
【小问2详解】
从图中可知,压强相同情况下,随着温度升高,C2H6的平衡转化率增大,因此该反应为吸热反应,ΔH4>0。
a.600℃,0.6MPa时,C2H6的平衡转化率约为20%,a错误;
b.700℃,0.7MPa时,C2H6的平衡转化率约为50%,最接近40%,b正确;
c.700℃,0.8MPa时,C2H6的平衡转化率接近50%,升高温度,该反应的化学平衡正向移动,C2H6转化率增大,因此800℃,0.8MPa时,C2H6的平衡转化率大于50%,c错误;
故答案选b。
【小问3详解】
①仅发生反应i,设初始时C2H6物质的量为1mol,平衡时C2H6转化率为25%,则消耗C2H60.25mol,生成C2H40.25mol,生成H20.25mol,Ka1==。
②只发生反应i时,随着反应进行,气体总物质的量增大,压强增大促使化学平衡逆向移动,同时发生反应i和反应ii,且从题干可知Ka2远大于Ka1,反应ii为等体积反应,因为反应ii的发生相当于在单独发生反应i的基础上减小了压强,则反应i化学平衡正向移动,C2H4平衡产率增大。
【小问4详解】
配合物中,金属离子通常提供空轨道,配体提供孤电子对,则Cu+的4s空轨道与C2H4分子的π键电子形成配位键。C2H4能与Cu+形成配合物而吸附在Y分子筛上,C2H6中无孤电子对不能与Cu+形成配合物而无法吸附,通过这种分子筛分离C2H4和C2H6,优点是识别度高,能有效将C2H4和C2H6分离,分离出的产物中杂质少,纯度较高。
【小问5详解】
A.前30min,等于0,出口浓度c为0,说明两种气体均被吸附,A错误;
B.p点时,C2H6对应的约为1.75,出口处C2H6浓度较大,而C2H4对应的较小,出口处C2H4浓度较小,说明此时出口处气体的主要成分为C2H6,B正确;
C.a点处C2H6的=1,说明此时C2H6不再吸附在吸附剂上,而a点后C2H6的>1,说明原来吸附在吸附剂上的C2H6也开始脱落,同时从图中可知,a点后一段时间,C2H4的仍为0,说明是吸附的C2H6逐渐被C2H4替代,p点到b点之间,吸附的C2H6仍在被C2H4替代,但是速率相对之前有所减小,同时吸附剂可能因吸附量有限等原因无法一直吸附C2H4,因此p点后C2H4的也逐步增大,直至等于1,此时吸附剂不能再吸附两种物质,C正确;
故答案选BC。
15.(2023·全国甲卷)甲烷选择性氧化制备甲醇是一种原子利用率高的方法。回答下列问题:
(1)已知下列反应的热化学方程式:
①
②
反应③的_______,平衡常数_______(用表示)。
(2)电喷雾电离等方法得到的(等)与反应可得。与反应能高选择性地生成甲醇。分别在和下(其他反应条件相同)进行反应,结果如下图所示。图中的曲线是_______(填“a”或“b”。、时的转化率为_______(列出算式)。
(3)分别与反应,体系的能量随反应进程的变化如下图所示(两者历程相似,图中以示例)。
(ⅰ)步骤Ⅰ和Ⅱ中涉及氢原子成键变化的是_______(填“Ⅰ”或“Ⅱ”)。
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则与反应的能量变化应为图中曲线_______(填“c”或“d”)。
(ⅲ)与反应,氘代甲醇的产量_______(填“>”“<”或“=”)。若与反应,生成的氘代甲醇有_______种。
【答案】(1) 或
(2) b
(3)Ⅰ c < 2
【解析】(1)根据盖斯定律可知,反应③=(反应②-①),所以对应;根据平衡常数表达式与热化学方程式之间的关系可知,对应化学平衡常数或,故答案为:;或;
(2)根据图示信息可知,纵坐标表示-lg(),即与MO+的微粒分布系数成反比,与M+的微粒分布系数成正比。则同一时间内,b曲线生成M+的物质的量浓度比a曲线的小,证明化学反应速率慢,又因同一条件下降低温度化学反应速率减慢,所以曲线b表示的是300 K条件下的反应;
根据上述分析结合图像可知,、时-lg()=0.1,则=10-0.1,利用数学关系式可求出,根据反应可知,生成的M+即为转化的,则的转化率为;故答案为:b;;
(3)(ⅰ)步骤Ⅰ涉及的是碳氢键的断裂和氢氧键的形成,步骤Ⅱ中涉及碳氧键形成,所以符合题意的是步骤Ⅰ;
(ⅱ)直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则此时正反应活化能会增大,根据图示可知,与反应的能量变化应为图中曲线c;
(ⅲ)与反应时,因直接参与化学键变化的元素被替换为更重的同位素时,反应速率会变慢,则单位时间内产量会下降,则氘代甲醇的产量<;根据反应机理可知,若与反应,生成的氘代甲醇可能为或共2种,故答案为:<;2。
16.(2023·全国乙卷)硫酸亚铁在工农业生产中有许多用途,如可用作农药防治小麦黑穗病,制造磁性氧化铁、铁催化剂等。回答下列问题:
(1)在气氛中,的脱水热分解过程如图所示:
根据上述实验结果,可知_______,_______。
(2)已知下列热化学方程式:
则的_______。
(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。平衡时的关系如下图所示。时,该反应的平衡总压_______、平衡常数_______。随反应温度升高而_______(填“增大”“减小”或“不变”)。
(4)提高温度,上述容器中进一步发生反应(Ⅱ),平衡时_______(用表示)。在时,,则_______,_______(列出计算式)。
【答案】(1) 4 1
(2)(a+c-2b)
(3) 3 增大
(4) 46.26
【解析】(1)由图中信息可知,当失重比为19.4%时,转化为,则,解之得=4;当失重比为38.8%时,转化为,则,解之得y=1。
(2)①
②
③
根据盖斯定律可知,①+③-②2可得,则(a+c-2b)。
(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。由平衡时的关系图可知,时,,则,因此,该反应的平衡总压3、平衡常数。由图中信息可知,随着温度升高而增大,因此,随反应温度升高而增大。
(4)提高温度,上述容器中进一步发生反应(Ⅱ),在同温同压下,不同气体的物质的量之比等于其分压之比,由于仅发生反应(Ⅰ)时,则,因此,平衡时。在时,,则、,联立方程组消去,可得,代入相关数据可求出46.26,则,。
17.(2023·新课标卷)氨是最重要的化学品之一,我国目前氨的生产能力位居世界首位。回答下列问题:
(1)根据图1数据计算反应的_______。
(2)研究表明,合成氨反应在催化剂上可能通过图2机理进行(*表示催化剂表面吸附位,表示被吸附于催化剂表面的)。判断上述反应机理中,速率控制步骤(即速率最慢步骤)为_______(填步骤前的标号),理由是_______。
(3)合成氨催化剂前驱体(主要成分为)使用前经还原,生成包裹的。已知属于立方晶系,晶胞参数,密度为,则晶胞中含有的原子数为_______(列出计算式,阿伏加德罗常数的值为)。
(4)在不同压强下,以两种不同组成进料,反应达平衡时氨的摩尔分数与温度的计算结果如下图所示。其中一种进料组成为,另一种为。(物质i的摩尔分数:)
①图中压强由小到大的顺序为_______,判断的依据是_______。
②进料组成中含有惰性气体的图是_______。
③图3中,当、时,氮气的转化率_______。该温度时,反应的平衡常数_______(化为最简式)。
【答案】(1)
(2) (ⅱ) 在化学反应中,最大的能垒为速率控制步骤,而断开化学键的步骤都属于能垒,由于的键能比H-H键的大很多,因此,在上述反应机理中,速率控制步骤为(ⅱ)
(3)
(4) 合成氨的反应为气体分子数减少的反应,压强越大平衡时氨的摩尔分数越大 图4
【解析】(1)在化学反应中,断开化学键要消耗能量,形成化学键要释放能量,反应的焓变等于反应物的键能总和与生成物的键能总和的差,因此,由图1数据可知,反应的。
(2)由图1中信息可知,的,则的键能为;的,则H-H键的键能为。在化学反应中,最大的能垒为速率控制步骤,而断开化学键的步骤都属于能垒,由于的键能比H-H键的大很多,因此,在上述反应机理中,速率控制步骤为(ⅱ)。
(3)已知属于立方晶系,晶胞参数,密度为,设其晶胞中含有的原子数为,则晶体密度,解之得,即晶胞中含有的原子数为。
(4)①合成氨的反应中,压强越大越有利于氨的合成,因此,压强越大平衡时氨的摩尔分数越大。由图中信息可知,在相同温度下,反应达平衡时氨的摩尔分数,因此,图中压强由小到大的顺序为,判断的依据是:合成氨的反应为气体分子数减少的反应,压强越大平衡时氨的摩尔分数越大。
②对比图3和图4中的信息可知,在相同温度和相同压强下,图4中平衡时氨的摩尔分数较小。在恒压下充入情性气体,反应混合物中各组分的浓度减小,各组分的分压也减小,化学平衡要朝气体分子数增大的方向移动,因此,充入情性气体不利于合成氨,进料组成中含有情性气体的图是图4。
③图3中,进料组成为两者物质的量之比为3:1。假设进料中氢气和氮气的物质的量分别为3mol和1mol,达到平衡时氮气的变化量为x mol,则有:
当、时,,解之得,则氮气的转化率,平衡时、、的物质的量分别为、2、,其物质的量分数分别为、、,则该温度下因此,该温度时,反应的平衡常数。
18.(2023·广东卷)配合物广泛存在于自然界,且在生产和生活中都发挥着重要作用。
(1)某有机物能与形成橙红色的配离子,该配离子可被氧化成淡蓝色的配离子。
①基态的电子轨道表示式为 。
②完成反应的离子方程式:
(2)某研究小组对(1)中②的反应进行了研究。
用浓度分别为的溶液进行了三组实验,得到随时间t的变化曲线如图。
①时,在内,的平均消耗速率= 。
②下列有关说法中,正确的有 。
A.平衡后加水稀释,增大
B.平衡转化率:
C.三组实验中,反应速率都随反应进程一直减小
D.体系由橙红色转变为淡蓝色所需时间:
(3)R的衍生物L可用于分离稀土。溶液中某稀土离子(用M表示)与L存在平衡:
研究组配制了L起始浓度与L起始浓度比不同的系列溶液,反应平衡后测定其核磁共振氢谱。配体L上的某个特征H在三个物种中的化学位移不同,该特征H对应吸收峰的相对峰面积S(体系中所有特征H的总峰面积计为1)如下表。
0 1.00 0 0
a x 0.64
b 0.40 0.60
【注】核磁共振氢谱中相对峰面积S之比等于吸收峰对应H的原子数目之比;“”表示未检测到。
①时, 。
②时,平衡浓度比 。
(4)研究组用吸收光谱法研究了(3)中M与L反应体系。当时,测得平衡时各物种随的变化曲线如图。时,计算M的平衡转化率 (写出计算过程,结果保留两位有效数字)。
【答案】(1) HNO2
(2) A、B
(3) 0.36 3:4或0.75
(4)98%
【解析】(1)①基态的电子轨道表示式为 ;
②根据原子守恒可知离子方程式中需要增加HNO2。
(2)①浓度分别为的溶液,反应物浓度增加,反应速率增大,据此可知三者对应的曲线分别为Ⅰ、Ⅱ、Ⅲ;时,在内,观察图像可知的平均消耗速率为;
②A.对于反应HNO2,加水稀释,平衡往粒子数增加的方向移动,含量增加,含量减小,增大,A正确;
B.浓度增加,转化率增加,故,B正确;
C.观察图像可知,三组实验反应速率都是前期速率增加,后期速率减小,C错误;
D.硝酸浓度越高,反应速率越快,体系由橙红色转变为淡蓝色所需时间越短,故,D错误;
故选AB。
(3)①时,,且=0.64,得x=0.36;
②相比于含有两个配体,则与的浓度比应为相对峰面积S的一半与的相对峰面积S之比,即。
(4);,由L守恒可知,则;则M的转化率为。
19.(2023·山东卷)一定条件下,水气变换反应的中间产物是。为探究该反应过程,研究水溶液在密封石英管中的分子反应:
Ⅰ.
Ⅱ.
研究发现,在反应Ⅰ、Ⅱ中,仅对反应Ⅰ有催加速作用;反应Ⅰ速率远大于反应Ⅱ,近似认为反应Ⅰ建立平衡后始终处于平衡状态。忽略水电离,其浓度视为常数。回答下列问题:
(1)一定条件下,反应Ⅰ、Ⅱ的焓变分别为、,则该条件下水气变换反应的焓变_____(用含的代数式表示)。
(2)反应Ⅰ正反应速率方程为:,k为反应速率常数。温度下,电离平衡常数为,当平衡浓度为时,浓度为_____,此时反应Ⅰ应速率_____(用含和k的代数式表示)。
(3)温度下,在密封石英管内完全充满水溶液,使分解,分解产物均完全溶于水。含碳物种浓度与反应时间的变化关系如图所示(忽略碳元素的其他存在形式)。时刻测得的浓度分别为,反应Ⅱ达平衡时,测得的浓度为。体系达平衡后_____(用含y的代数式表示,下同),反应Ⅱ的平衡常数为_____。
相同条件下,若反应起始时溶液中同时还含有盐酸,则图示点中,的浓度峰值点可能是_____(填标号)。与不同盐酸相比,达浓度峰值时,浓度_____(填“增大”“减小”或“不变”),的反应_____(填“增大”“减小”或“不变”)。
【答案】(1)-
(2)
(3) a 减小 不变
【解析】(1)根据盖斯定律,反应II-反应I=水气变换反应,故水气变换反应的焓变=-;
(2)T1温度时,HCOOH建立电离平衡:
,c(HCOO-)=c(H+),故c(H+)=。
。
(3)t1时刻时,c(CO)达到最大值,说明此时反应I达平衡状态。此时
故t1时刻c(HCOOH)=1.0-0.70-0.16=0.14 mol·L-1,K(I)=。t1时刻→反应II达平衡过程,
则c(H2)=b+0.16=y,b=(y-0.16)mol·L-1,c(HCOOH)=0.14-a-b=0.3-a-y,c(CO)=a+0.7,K(I)=,a=。故=,K(II)=。
加入0.1 mol·L-1盐酸后,H+对反应I起催化作用,加快反应I的反应速率,缩短到达平衡所需时间,故CO浓度峰值提前,由于时间缩短,反应Ⅱ消耗的HCOOH减小,体系中HCOOH浓度增大,导致CO浓度大于t1时刻的峰值,故c(CO)最有可能在a处达到峰值。此时c(CO2)会小于不含盐酸的浓度,=K(I),温度不变,平衡常数不变,则的值不变。
20.(2023·北京卷)尿素合成的发展体现了化学科学与技术的不断进步。
(1)十九世纪初,用氰酸银与在一定条件下反应制得,实现了由无机物到有机物的合成。该反应的化学方程式是____________________。
(2)二十世纪初,工业上以和为原料在一定温度和压强下合成尿素。反应分两步:
ⅰ.和生成;
ⅱ.分解生成尿素。
结合反应过程中能量变化示意图,下列说法正确的是__________(填序号)。
a.活化能:反应ⅰ<反应ⅱ
b.ⅰ放热反应,ⅱ为吸热反应
c.
(3)近年研究发现,电催化和含氮物质(等)在常温常压下合成尿素,有助于实现碳中和及解决含氮废水污染问题。向一定浓度的溶液通至饱和,在电极上反应生成,电解原理如图所示。
①电极是电解池的__________极。
②电解过程中生成尿素的电极反应式是_____________。
(4)尿素样品含氮量的测定方法如下。
已知:溶液中不能直接用溶液准确滴定。
①消化液中的含氮粒子是__________。
②步骤ⅳ中标准溶液的浓度和消耗的体积分别为和,计算样品含氮量还需要的实验数据有__________。
【答案】(1)
(2)ab
(3) 阳
(4) 样品的质量、步骤Ⅲ所加入溶液的体积和浓度
【解析】(1)根据原子守恒分析,二者反应生成尿素和氯化银,化学方程式是。答案为;
(2)a.反应ⅰ的活化能是,反应ⅱ活化能是,,a项正确;
b.从图中反应物和生成物能量的相对大小可看出反应ⅰ放热,反应ⅱ吸热,b项正确;
c.总反应的:,c项错误;
故选ab。
(3)①电极b上发生失电子生成的氧化反应,是电解池的阳极。②a极硝酸根离子得电子转化为尿素,再结合酸性环境可分析出电极反应式为。答案为阳极;;
(4)①尿素消化分解生成和,由于反应中存在浓,则消化液中含氮粒子为。②除了已知数据外,还需要的是样品的质量、步骤ⅲ所加入溶液的体积和浓度。答案为;样品的质量、步骤Ⅲ所加入H2SO4溶液的体积和浓度。
21.(2023·湖北卷)纳米碗是一种奇特的碗状共轭体系。高温条件下,可以由分子经过连续5步氢抽提和闭环脱氢反应生成。的反应机理和能量变化如下:
回答下列问题:
(1)已知中的碳氢键和碳碳键的键能分别为和,H-H键能为。估算的_______。
(2)图示历程包含_______个基元反应,其中速率最慢的是第_______个。
(3)纳米碗中五元环和六元环结构的数目分别为_______、_______。
(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,该反应的平衡常数为_______(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
(5)及反应的(为平衡常数)随温度倒数的关系如图所示。已知本实验条件下,(R为理想气体常数,c为截距)。图中两条线几乎平行,从结构的角度分析其原因是_______。
(6)下列措施既能提高反应物的平衡转化率,又能增大生成的反应速率的是_______(填标号)。
a.升高温度 b.增大压强 c.加入催化剂
【答案】(1)128
(2) 3 3
(3) 6 10
(4)
(5)在反应过程中,断裂和形成的化学键相同
(6)a
【解析】(1)由和的结构式和反应历程可以看出,中断裂了2根碳氢键,形成了1根碳碳键,所以的=,故答案为:128;
(2)由反应历程可知,包含3个基元反应,分别为:,,,其中第三个的活化能最大,反应速率最慢,故答案为:3;3;
(3)由的结构分析,可知其中含有1个五元环,10个六元环,每脱两个氢形成一个五元环,则总共含有6个五元环,10个六元环,故答案为:6;10;
(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,设起始量为1mol,则根据信息列出三段式为:
则,,,该反应的平衡常数=,故答案为:;
(5)及反应的(为平衡常数)随温度倒数的关系如图。图中两条线几乎平行,说明斜率几乎相等,根据(R为理想气体常数,c为截距)可知,斜率相等,则说明焓变相等,因为在反应过程中,断裂和形成的化学键相同,故答案为:在反应过程中,断裂和形成的化学键相同;
(6)a.由反应历程可知,该反应为吸热反应,升温,反应正向进行,提高了平衡转化率反应速率也加快,a符合题意;
b.由化学方程式可知,该反应为正向体积增大的反应,加压,反应逆向进行,降低了平衡转化率,b不符合题意;
c.加入催化剂,平衡不移动,不能提高平衡转化率,c不符合题意;
故答案为:a。
22.(2023·湖南卷)聚苯乙烯是一类重要的高分子材料,可通过苯乙烯聚合制得。
Ⅰ.苯乙烯的制备
(1)已知下列反应的热化学方程式:
①
②
③
计算反应④的_______;
(2)在某温度、下,向反应器中充入气态乙苯发生反应④,其平衡转化率为50%,欲将平衡转化率提高至75%,需要向反应器中充入_______水蒸气作为稀释气(计算时忽略副反应);
(3)在、下,以水蒸气作稀释气。作催化剂,乙苯除脱氢生成苯乙烯外,还会发生如下两个副反应:
⑤
⑥
以上反应体系中,芳香烃产物苯乙烯、苯和甲苯的选择性S()随乙苯转化率的变化曲线如图所示,其中曲线b代表的产物是_______,理由是_______;
(4)关于本反应体系中催化剂的描述错误的是_______;
A.X射线衍射技术可测定晶体结构
B.可改变乙苯平衡转化率
C.降低了乙苯脱氢反应的活化能
D.改变颗粒大小不影响反应速率
Ⅱ.苯乙烯的聚合
苯乙烯聚合有多种方法,其中一种方法的关键步骤是某(Ⅰ)的配合物促进(引发剂,X表示卤素)生成自由基,实现苯乙烯可控聚合。
(5)引发剂中活性最高的是_______;
(6)室温下,①在配体L的水溶液中形成,其反应平衡常数为K;②在水中的溶度积常数为。由此可知,在配体L的水溶液中溶解反应的平衡常数为_______(所有方程式中计量系数关系均为最简整数比)。
【答案】(1)+118
(2)5
(3) 苯 反应④为主反应,反应⑤⑥为副反应,苯乙烯的选择性最大;在恒温恒压下,随乙苯转化率的增大,反应⑤正向移动,反应⑥不移动,则曲线b代表产物苯
(4)BD
(5)C6H5CH2Cl
(6)K Ksp
【解析】(1)根据盖斯定律,将①-②-③可得C6H5C2H5(g) C6H5CH=CH2(g)+H2(g) H4=-4386.9kJ/mol-(-4263.1kJ/mol)-(-241.8kJ/mol)=+118kJ/mol;答案为:+118;
(2)设充入H2O(g)物质的量为xmol;在某温度、100kPa下,向反应器中充入1mol气态乙苯发生反应④。乙苯的平衡转化率为50%,可列三段式,此时平衡时混合气体总物质的量为1.5mol,此时容器的体积为V;当乙苯的平衡转化率为75%,可列三段式,此时乙苯、苯乙烯、H2物质的量之和为1.75mol,混合气的总物质的量为(1.75+x)mol,在恒温、恒压时,体积之比等于物质的量之比,此时容器的体积为;两次平衡温度相同,则平衡常数相等,则=,解得x=5;答案为:5;
(3)曲线a芳香烃产物的选择性大于曲线b、c芳香烃产物的选择性,反应④为主反应,反应⑤⑥为副反应,则曲线a代表产物苯乙烯的选择性;反应④⑤的正反应为气体分子数增大的反应,反应⑥的正反应是气体分子数不变的反应;在913K、100kPa(即恒温恒压)下以水蒸气作稀释气,乙苯的转化率增大,即减小压强,反应④⑤都向正反应方向移动,反应⑥平衡不移动,故曲线b代表的产物是苯;答案为:苯;反应④为主反应,反应⑤⑥为副反应,苯乙烯的选择性最大;在恒温恒压下,随乙苯转化率的增大,反应⑤正向移动,反应⑥不移动,则曲线b代表产物苯;
(4)A.测定晶体结构最常用的仪器是X射线衍射仪,即用X射线衍射技术可测定Fe2O3晶体结构,A项正确;
B.催化剂不能使平衡发生移动,不能改变乙苯的平衡转化率,B项错误;
C.催化剂能降低反应的活化能,加快反应速率,故Fe2O3可降低乙苯脱氢反应的活化能,C项正确;
D.催化剂颗粒大小会影响接触面积,会影响反应速率,D项错误;
答案选BD。
(5)电负性Cl>Br>I,则极性C—Cl键>C—Br键>C—I键,则C6H5CH2Cl更易生成自由基,即活性最高的是C6H5CH2Cl;答案为:C6H5CH2Cl;
(6)Cu+在配体L的水溶液中形成[Cu(L)2]+,则Cu++2L [Cu(L)2]+的平衡常数K=;CuBr在水中的溶度积常数Ksp=c(Cu+) c(Br-);CuBr在配体L的水溶液中溶解反应为CuBr+2L [Cu(L)2]++Br-,该反应的平衡常数为==K Ksp;答案为:K Ksp。
23.(2023·辽宁卷)硫酸工业在国民经济中占有重要地位。
(1)我国古籍记载了硫酸的制备方法——“炼石胆(CuSO4·5H2O)取精华法”。借助现代仪器分析,该制备过程中CuSO4·5H2O分解的TG曲线(热重)及DSC曲线(反映体系热量变化情况,数值已省略)如下图所示。700℃左右有两个吸热峰,则此时分解生成的氧化物有SO2、 和 (填化学式)。
(2)铅室法使用了大容积铅室制备硫酸(76%以下),副产物为亚硝基硫酸,主要反应如下:
NO2+SO2+H2O=NO+H2SO4
2NO+O2=2NO2
(ⅰ)上述过程中NO2的作用为 。
(ⅱ)为了适应化工生产的需求,铅室法最终被接触法所代替,其主要原因是 (答出两点即可)。
(3)接触法制硫酸的关键反应为SO2的催化氧化:
SO2(g)+O2(g)SO3(g) ΔH=-98.9kJ·mol-1
(ⅰ)为寻求固定投料比下不同反应阶段的最佳生产温度,绘制相应转化率(α)下反应速率(数值已略去)与温度的关系如下图所示,下列说法正确的是 。
a.温度越高,反应速率越大
b.α=0.88的曲线代表平衡转化率
c.α越大,反应速率最大值对应温度越低
d.可根据不同下的最大速率,选择最佳生产温度
(ⅱ)为提高钒催化剂的综合性能,我国科学家对其进行了改良。不同催化剂下,温度和转化率关系如下图所示,催化性能最佳的是 (填标号)。
(ⅲ)设O2的平衡分压为p,SO2的平衡转化率为αe,用含p和αe的代数式表示上述催化氧化反应的Kp= (用平衡分压代替平衡浓度计算)。
【答案】(1) CuO SO3
(2) 催化剂 反应中有污染空气的NO和NO2放出影响空气环境、NO2可以溶解在硫酸中给产物硫酸带来杂质、产率不高(答案合理即可)
(3) cd d
【解析】(1)根据图示的热重曲线所示,在700℃左右会出现两个吸热峰,说明此时CuSO4发生热分解反应,从TG图像可以看出,质量减少量为原CuSO4质量的一半,说明有固体CuO剩余,还有其他气体产出,此时气体产物为SO2、SO3、O2,可能出现的化学方程式为3CuSO43CuO+2SO2↑+SO3↑+O2↑,结合反应中产物的固体产物质量和气体产物质量可以确定,该反应的产物为CuO、SO2、SO3、O2,故答案为CuO、SO3。
(2)(i)根据所给的反应方程式,NO2在反应过程中线消耗再生成,说明NO2在反应中起催化剂的作用;
(ii)近年来,铅室法被接触法代替因为在反应中有污染空气的NO和NO2放出影响空气环境、同时作为催化剂的NO2可以溶解在硫酸中给产物硫酸带来杂质影响产品质量、产率不高(答案合理即可)。
(3)(i)a.根据不同转化率下的反应速率曲线可以看出,随着温度的升高反应速率先加快后减慢,a错误;
b.从图中所给出的速率曲线可以看出,相同温度下,转化率越低反应速率越快,但在转化率小于88%的时的反应速率图像并没有给出,无法判断α=0.88的条件下是平衡转化率,b错误;
c.从图像可以看出随着转化率的增大,最大反应速率不断减小,最大反应速率出现的温度也逐渐降低,c正确;
d.从图像可以看出随着转化率的增大,最大反应速率出现的温度也逐渐降低,这时可以根据不同转化率选择合适的反应温度以减少能源的消耗,d正确;
故答案选cd;
(ii)为了提高催化剂的综合性能,科学家对催化剂进行了改良,从图中可以看出标号为d的催化剂V-K-Cs-Ce对SO2的转化率最好,产率最佳,故答案选d;
(iii)利用分压代替浓度计算平衡常数,反应的平衡常数Kp===;设SO2初始量为m mol,则平衡时n(SO2)=m-m·αe=m(1-αe),n(SO3)=m·αe,Kp==,故答案为。
24.(2023·浙江卷)水煤气变换反应是工业上的重要反应,可用于制氢。
水煤气变换反应:
该反应分两步完成:
请回答:
(1) 。
(2)恒定总压和水碳比[]投料,在不同条件下达到平衡时和的分压(某成分分压=总压×该成分的物质的量分数)如下表:
条件1 0.40 0.40 0
条件2 0.42 0.36 0.02
①在条件1下,水煤气变换反应的平衡常数 。
②对比条件1,条件2中产率下降是因为发生了一个不涉及的副反应,写出该反应方程式 。
(3)下列说法正确的是______。
A.通入反应器的原料气中应避免混入
B.恒定水碳比,增加体系总压可提高的平衡产率
C.通入过量的水蒸气可防止被进一步还原为
D.通过充入惰性气体增加体系总压,可提高反应速率
(4)水煤气变换反应是放热的可逆反应,需在多个催化剂反应层间进行降温操作以“去除”反应过程中的余热(如图1所示),保证反应在最适宜温度附近进行。
①在催化剂活性温度范围内,图2中b-c段对应降温操作的过程,实现该过程的一种操作方法是 。
A.按原水碳比通入冷的原料气 B.喷入冷水(蒸气) C.通过热交换器换热
②若采用喷入冷水(蒸气)的方式降温,在图3中作出平衡转化率随温度变化的曲线 。
(5)在催化剂活性温度范围内,水煤气变换反应的历程包含反应物分子在催化剂表面的吸附(快速)、反应及产物分子脱附等过程。随着温度升高,该反应的反应速率先增大后减小,其速率减小的原因是 。
【答案】(1)6
(2) 2 CO+3H2 CH4+H2O
(3)AC
(4) AC
(5)温度过高时,不利于反应物分子在催化剂表面的吸附,从而导致其反应物分子在催化剂表面的吸附量及浓度降低,反应速率减小;温度过高还会导致催化剂的活性降低,从而使化学反应速率减小
【解析】(1)设方程式①
②
③
根据盖斯定律可知,③=①-②,则;
(2)①条件1下没有甲烷生成,只发生了水煤气变换反应,该反应是一个气体分子数不变的反应。设在条件1下平衡时容器的总体积为V,水蒸气和一氧化碳的投料分别为12mol和5mol,参加反应的一氧化碳为xmol,根据已知信息可得以下三段式:
,解得x=4;
则平衡常数;
②根据表格中的数据可知,有甲烷生成,且该副反应没有二氧化碳参与,且氢气的产率降低,则该方程式为:CO+3H2 CH4+H2O;
(3)A.一氧化碳和氢气都可以和氧气反应,则通入反应器的原料气中应避免混入,A正确;
B.该反应前后气体计量系数相同,则增加体系总压平衡不移动,不能提高平衡产率,B错误;
C.通入过量的水蒸气可以促进四氧化三铁被氧化为氧化铁,水蒸气不能将铁的氧化物还原为单质铁,但过量的水蒸气可以降低体系中CO和H2的浓度,从而防止铁的氧化物被还原为单质铁,C正确;
D.若保持容器的体积不变,通过充入惰性气体增加体系总压,反应物浓度不变,反应速率不变,D错误;
故选AC;
(4)①A.按原水碳比通入冷的原料气,可以降低温度,同时化学反应速率稍减小,导致CO的转化率稍减小,与图中变化相符,A正确;
B.喷入冷水(蒸气),可以降低温度,但是同时水蒸气的浓度增大,会导致CO的转化率增大,与图中变化不符,B错误;
C.通过热交换器换热,可以降低温度,且不改变投料比,同时化学反应速率稍减小,导致CO的转化率稍减小,与图中变化相符,C正确;
故选AC;
②增大水蒸气的浓度,平衡正向移动,则一氧化碳的的平衡转化率增大,会高于原平衡线,故图像为: ;
(5)反应物分子在催化剂表面的吸附是一个放热的快速过程,温度过高时,不利于反应物分子在催化剂表面的吸附,从而导致其反应物分子在催化剂表面的吸附量及浓度降低,反应速率减小;温度过高还会导致催化剂的活性降低,从而使化学反应速率减小。
25.(2023·浙江卷)“碳达峰·碳中和”是我国社会发展重大战略之一,还原是实现“双碳”经济的有效途径之一,相关的主要反应有:
Ⅰ:
Ⅱ:
请回答:
(1)有利于提高平衡转化率的条件是___________。
A.低温低压 B.低温高压 C.高温低压 D.高温高压
(2)反应的 , (用表示)。
(3)恒压、时,和按物质的量之比投料,反应经如下流程(主要产物已标出)可实现高效转化。
①下列说法正确的是 。
A.可循环利用,不可循环利用
B.过程ⅱ,吸收可促使氧化的平衡正移
C.过程ⅱ产生的最终未被吸收,在过程ⅲ被排出
D.相比于反应Ⅰ,该流程的总反应还原需吸收的能量更多
②过程ⅱ平衡后通入,测得一段时间内物质的量上升,根据过程ⅲ,结合平衡移动原理,解释物质的量上升的原因 。
(4)还原能力可衡量转化效率,(同一时段内与的物质的量变化量之比)。
①常压下和按物质的量之比投料,某一时段内和的转化率随温度变化如图1,请在图2中画出间R的变化趋势,并标明时R值 。
②催化剂X可提高R值,另一时段内转化率、R值随温度变化如下表:
温度/℃ 480 500 520 550
转化率/% 7.9 11.5 20.2 34.8
R 2.6 2.4 2.1 1.8
下列说法不正确的是
A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率
B.温度越低,含氢产物中占比越高
C.温度升高,转化率增加,转化率降低,R值减小
D.改变催化剂提高转化率,R值不一定增大
【答案】(1)C
(2)
(3) BC 通入分解平衡正移,导致增大,促进还原平衡正移
(4) C
【解析】(1)反应Ⅰ为气体体积增大的吸热反应,反应Ⅱ为气体体积不变的吸热反应,△H>0,升高温度,平衡右移,CH4平衡转化率增大;降低压强,平衡右移,CH4平衡转化率增大,故有利于提高平衡转化率的条件是高温低压;答案选C;
(2)已知:Ⅰ:
Ⅱ:
根据盖斯定律,由Ⅰ+Ⅱ2得反应;
故△H1+2△H2=+329,;
(3)①A.根据流程可知,转化为Fe,Fe又转化为,可循环利用;CaCO3受热分解生成和CO2, 又与CO2反应生成CaCO3,也可循环利用,选项A错误;
B.过程ⅱ,吸收使浓度降低,促进氧化的平衡正移,选项B正确;
C.过程ⅱ吸收而产生的最终未被吸收,在过程ⅲ被排出,选项C正确;
D.焓变只与起始物质的量有关,与过程无关,故相比于反应Ⅰ,该流程的总反应还原需吸收的能量一样多,选项D错误;
答案选BC;
②通入分解平衡正移,导致增大,促进还原平衡正移,故过程ⅱ平衡后通入,测得一段时间内物质的量上升;
(4)①600℃以下,甲烷转化率随温度升高增大程度大于二氧化碳转化率,该阶段R减小,600℃以上,二氧化碳转化率随温度升高增大程度大于甲烷转化率,该阶段R增大,根据图1可知时,转化率为100%,即=1mol, 转化率为60%,即=3mol60%=1.8mol,故==1.8,故间R的变化趋势如图:
②A.R值提高是由于催化剂X选择性地提高反应Ⅱ的速率,使单位时间内反应Ⅱ中CO2的转化率增大,增大的倍数比大,则R提高,选项A正确;
B.根据表中数据可知,温度越低,转化率越小,而R越大,增大的倍数比大,含氢产物中占比越高,选项B正确;
C.温度升高,转化率增加,转化率也增大,且两个反应中的转化率均增大,增大倍数多,故R值增大,选项C不正确;
D.改变催化剂使反应有选择性按反应Ⅰ而提高转化率,若转化率减小,则R值不一定增大,选项D正确;
答案选C。
26.(2022·全国甲卷)金属钛(Ti)在航空航天、医疗器械等工业领域有着重要用途,目前生产钛的方法之一是将金红石转化为,再进一步还原得到钛。回答下列问题:
(1)转化为有直接氯化法和碳氯化法。在时反应的热化学方程式及其平衡常数如下:
(ⅰ)直接氯化:
(ⅱ)碳氯化:
①反应的为_______,_______Pa。
②碳氯化的反应趋势远大于直接氯化,其原因是_______。
③对于碳氯化反应:增大压强,平衡_______移动(填“向左”“向右”或“不”);温度升高,平衡转化率_______(填“变大”“变小”或“不变”)。
(2)在,将、C、以物质的量比1∶2.2∶2进行反应。体系中气体平衡组成比例(物质的量分数)随温度变化的理论计算结果如图所示。
①反应的平衡常数_______。
②图中显示,在平衡时几乎完全转化为,但实际生产中反应温度却远高于此温度,其原因是_______。
(3)碳氯化是一个“气—固—固”反应,有利于“固—固”接触的措施是_______。
【答案】(1) -223 1.2×1014 碳氯化反应气体分子数增加, H小于0,是熵增、放热过程,熵判据与焓判据均是自发过程,而直接氯化的体系气体分子数不变、且是吸热过程 向左 变小
(2) 7.2×105 为了提高反应速率,在相同时间内得到更多的TiCl4产品,提高效益
(3)将两固体粉碎后混合,同时鼓入Cl2,使固体粉末“沸腾”
【解析】(1)①根据盖斯定律,将“反应ⅱ-反应ⅰ”得到反应2C(s)+O2(g)=2CO(g),则 H=-51kJ/mol-172kJ/mol=-223kJ/mol;则Kp===1.2×1014Pa;
②碳氯化的反应趋势远大于直接氯化,因为碳氯化反应气体分子数增加, H小于0,是熵增、放热过程,熵判据与焓判据均是自发过程,而直接氯化的体系气体分子数不变、且是吸热过程;
③对应碳氯化反应,气体分子数增大,依据勒夏特列原理,增大压强,平衡往气体分子数减少的方向移动,即平衡向左移动;该反应是放热反应,温度升高,平衡往吸热方向移动,即向左移动,则平衡转化率变小。
(2)①从图中可知,1400℃,体系中气体平衡组成比例CO2是0.05,TiCl4是0.35,CO是0.6,反应C(s)+CO2(g)=2CO(g)的平衡常数Kp(1400℃)==Pa=7.2×105Pa;
②实际生产中需要综合考虑反应的速率、产率等,以达到最佳效益,实际反应温度远高于200℃,就是为了提高反应速率,在相同时间内得到更多的TiCl4产品。
(3)固体颗粒越小,比表面积越大,反应接触面积越大。有利于TiO2 – C“固-固”接触,可将两者粉碎后混合,同时鼓入Cl2,使固体粉末“沸腾”,增大接触面积。
27.(2022·全国乙卷)油气开采、石油化工、煤化工等行业废气普遍含有的硫化氢,需要回收处理并加以利用。回答下列问题:
(1)已知下列反应的热化学方程式:
①
②
③
计算热分解反应④的________。
(2)较普遍采用的处理方法是克劳斯工艺。即利用反应①和②生成单质硫。另一种方法是:利用反应④高温热分解。相比克劳斯工艺,高温热分解方法的优点是________,缺点是________。
(3)在、反应条件下,将的混合气进行热分解反应。平衡时混合气中与的分压相等,平衡转化率为________,平衡常数________。
(4)在、反应条件下,对于分别为、、、、的混合气,热分解反应过程中转化率随时间的变化如下图所示。
①越小,平衡转化率________,理由是________。
②对应图中曲线________,计算其在之间,分压的平均变化率为________。
【答案】(1)170
(2) 副产物氢气可作燃料 耗能高
(3) 50% 4.76
(4) 越高 n(H2S):n(Ar)越小,H2S的分压越小,平衡向正反应方向进行,H2S平衡转化率越高 d 24.9
【解析】(1)已知:①2H2S(g)+3O2(g)=2SO2(g)+2H2O(g) ΔH1=-1036kJ/mol
②4H2S(g)+2SO2(g)=3S2(g)+4H2O(g) ΔH2=94kJ/mol
③2H2(g)+O2(g)=2H2O(g) ΔH3=-484kJ/mol
根据盖斯定律(①+②)×-③即得到2H2S(g)=S2(g)+2H2(g)的ΔH4=(-1036+94)kJ/mol×+484kJ/mol=170 kJ/mol;
(2)根据盖斯定律(①+②)×可得2H2S(g)+O2(g)=S2(g)+2H2O(g) ΔH=(-1036+94)kJ/mol×=-314kJ/mol,因此,克劳斯工艺的总反应是放热反应;根据硫化氢分解的化学方程式可知,高温热分解方法在生成单质硫的同时还有氢气生成。因此,高温热分解方法的优点是:可以获得氢气作燃料;但由于高温分解H2S会消耗大量能量,所以其缺点是耗能高;
(3)假设在该条件下,硫化氢和氩的起始投料的物质的量分别为1mol和4mol,根据三段式可知:
平衡时H2S和H2的分压相等,则二者的物质的量相等,即1-x=x,解得x=0.5,所以H2S的平衡转化率为,所以平衡常数Kp==≈4.76kPa;
(4)①由于正反应是体积增大的可逆反应,n(H2S):n(Ar)越小,H2S的分压越小,相当于降低压强,平衡向正反应方向移动,因此H2S平衡转化率越高;
②n(H2S):n(Ar)越小,H2S平衡转化率越高,所以n(H2S):n(Ar)=1:9对应的曲线是d;根据图像可知n(H2S):n(Ar)=1:9反应进行到0.1s时H2S转化率为0.24。假设在该条件下,硫化氢和氩的起始投料的物质的量分别为1mol和9mol,则根据三段式可知
此时H2S的压强为≈7.51kPa,H2S的起始压强为10kPa,所以H2S分压的平均变化率为=24.9kPa·s-1。
28.(2022·广东卷)铬及其化合物在催化、金属防腐等方面具有重要应用。
(1)催化剂可由加热分解制备,反应同时生成无污染气体。
①完成化学方程式:______________。
②催化丙烷脱氢过程中,部分反应历程如图,过程的焓变为_______(列式表示)。
③可用于的催化氧化。设计从出发经过3步反应制备的路线_______(用“→”表示含氮物质间的转化);其中一个有颜色变化的反应的化学方程式为_______。
(2)溶液中存在多个平衡。本题条件下仅需考虑如下平衡:
(ⅰ)
(ⅱ)
①下列有关溶液的说法正确的有_______。
A.加入少量硫酸,溶液的pH不变
B.加入少量水稀释,溶液中离子总数增加
C.加入少量溶液,反应(ⅰ)的平衡逆向移动
D.加入少量固体,平衡时与的比值保持不变
②25℃时,溶液中随pH的变化关系如图。当时,设、与的平衡浓度分别为x、y、,则x、y、z之间的关系式为_______;计算溶液中的平衡浓度_____(写出计算过程,结果保留两位有效数字)。
③在稀溶液中,一种物质对光的吸收程度(A)与其所吸收光的波长()有关;在一定波长范围内,最大A对应的波长()取决于物质的结构特征;浓度越高,A越大。混合溶液在某一波长的A是各组分吸收程度之和。为研究对反应(ⅰ)和(ⅱ)平衡的影响,配制浓度相同、不同的稀溶液,测得其A随的变化曲线如图,波长、和中,与的最接近的是_______;溶液从a变到b的过程中,的值_______(填“增大”“减小”或“不变”)。
【答案】(1) N2↑ 4H2O (E1-E2)+ΔH+(E3-E4)
2NO+O2=2NO2
(2) BD 当溶液pH=9时,,因此可忽略溶液中
即=0.20
反应(ii)的平衡常数K2===3.3×10-7
联立两个方程可得=6.0×10-4mol/L λ3 增大
【解析】(1)①分解过程中,生成Cr2O3和无污染气体,根据元素守恒可知,其余生成物为N2、H2O,根据原子守恒可知反应方程式为。
②设反应过程中第一步的产物为M,第二步的产物为N,则X→M ΔH1=(E1-E2),M→N ΔH2=ΔH,N→Y ΔH3=(E3-E4)1,根据盖斯定律可知,X(g)→Y(g)的焓变为ΔH1+ΔH2+ΔH3=(E1-E2)+ΔH+(E3-E4)。
③NH3在Cr2O3作催化剂条件下,能与O2反应生成NO,NO与O2反应生成红棕色气体NO2,NO2与H2O反应生成HNO3和NO,若同时通入O2,可将氮元素全部氧化为HNO3,因此从NH3出发经过3步反应制备HNO3的路线为;其中NO反应生成NO2过程中,气体颜色发生变化,其反应方程式为2NO+O2=2NO2。
(2)①K2Cr2O7溶液中存在平衡:(i)、(ii)。
A.向溶液中加入少量硫酸,溶液中c(H+)增大,(ii)平衡逆向移动,根据勒夏特列原理可知,平衡移动只是减弱改变量,平衡后,溶液中c(H+)依然增大,因此溶液的pH将减小,故A错误;
B.加水稀释过程中,根据“越稀越水解”、“越稀越电离”可知,(i)和(ii)的平衡都正向移动,两个平衡正向都是离子数增大的反应,因此稀释后,溶液中离子总数将增大,故B正确;
C.加入少量NaOH溶液,(ii)正向移动,溶液中将减小,(i)将正向移动,故C错误;
D.平衡(i)的平衡常数K1=,平衡常数只与温度和反应本身有关,因此加入少量K2Cr2O7溶液,不变,故D正确;
综上所述,答案为:BD。
②0.10mol/L K2Cr2O7溶液中,Cr原子的总浓度为0.20mol/L,当溶液pH=9.00时,溶液中Cr原子总浓度为=0.20mol/L,、与的平衡浓度分别为x、y、z mol/L,因此=0.10;由图8可知,当溶液pH=9时,,因此可忽略溶液中,即=0.20,反应(ii)的平衡常数K2===3.3×10-7,联立两个方程可得=6.0×10-4mol/L。
③根据反应(i)、(ii)是离子浓度增大的平衡可知,溶液pH越大,溶液中越大,混合溶液在某一波长的A越大,溶液的pH越大,溶液中越大,因此与的λmax最接近的是λ3;反应(i)的平衡常数K1= ,反应(ii)的平衡常数K2=,= = ,因此= ,由上述分析逆推可知,b>a,即溶液pH从a变到b的过程中,溶液中c(H+)减小,所以的值将增大。
29.(2022·福建卷)异丙醇可由生物质转化得到,催化异丙醇脱水制取高值化学品丙烯的工业化技术已引起人们的关注,其主要反应如下:
Ⅰ.
Ⅱ.
回答下列问题:
(1)已知,则燃烧生成和的热化学方程式为_______。
(2)在下,刚性密闭容器中的反应体系内水蒸气浓度与反应时间关系如下表:
反应时间 0 4 8 12 t 20
浓度 0 2440 3200 3600 4000 4100
①内,_______;
②t_______16(填“>”“<”或“=”)。
(3)在恒温刚性密闭容器中,反应Ⅰ、Ⅱ均达到平衡的判据是_______(填标号)。
a.的分压不变 b.混合气体密度不变
c. d.
(4)在一定条件下,若反应Ⅰ、Ⅱ的转化率分别为98%和40%,则丙烯的产率为_______。
(5)下图为反应Ⅰ、Ⅱ达到平衡时与温度的关系曲线。
(已知:对于可逆反应,任意时刻,式中)表示物质×的分压)
①在恒压平衡体系中充入少量水蒸气时,反应Ⅰ的的状态最有可能对应图中的_______点(填“甲”“乙”或“丙”),判断依据是_______。
②时,在密闭容器中加入一定量的,体系达到平衡后,测得的分压为,则水蒸气的分压为_______(用含x的代数式表示)。
【答案】(1)
(2) 190 >
(3)ad
(4)58.8%
(5) 甲 反应I平衡曲线为N,恒压时充入水蒸气,
【解析】(1)设Ⅲ ,根据盖斯定律Ⅲ-2×Ⅰ得。
(2)①内,,则;
②、、,△c(H2O)逐渐减小,说明反应速率减小,内,Δc(H2O)=400ppm,内,Δc(H2O)=400ppm,则t-12>4,即t>16。
(3)a.H2O的分压不变,则C3H6的分压也不变,反应1、Ⅱ各组分分压不变,反应1、Ⅱ均达到平衡,a正确;
b.反应物和生成物均为气体,混合气体的总质量不变,刚性密闭容器体积不变,则混合气体密度不变,不能作为反应I、Ⅱ均达到平衡的判据,b错误;
c.当时,反应不一定达到平衡,不能作为反应1、Ⅱ均达到平衡的判据,c错误;
d.,说明正逆反应速率相等,反应I达平衡,各组分分压不变,C3H6的分压不变,说明反应Ⅱ也达平衡,d正确;
故选ad。
(4)设C3H8O的物质的量为1mol,若lmol C3H8O完全反应,理论上生成1mol C3H6,因为反应Ⅰ、Ⅱ的转化率分别为98%和40%,反应I生成1mol×98%=0.98mol C3H6,反应Ⅱ消耗了40% C3H6,则达平衡时C3H6的物质的量为0.98mol×(1-40%)=0.588mol,所以丙烯的产率为=58.8%。
(5)①反应I为气体体积增大的吸热反应,反应Ⅱ为气体体积减小的放热反应,则升高温度,反应I正向移动,逐渐增大,反应Ⅱ逆向移动,逐渐减小,即反应I为平衡曲线为N,反应Ⅱ平衡曲线为M;在350℃恒压平衡体系中充入少量水蒸气时,对于反应I而言,相当于增大生成物浓度,使得>,即lg增大,反应I的状态最有可能对应图中的甲;
②由图可知,350°C时达平衡后,=0,则350℃时==1,设水蒸气的平衡分压为a MPa,则反应II的C3H6起始分压为 a MPa,对反应Ⅱ列三段式有
,解得a=MPa。
30.(2022·湖北卷)自发热材料在生活中的应用日益广泛。某实验小组为探究“”体系的发热原理,在隔热装置中进行了下表中的五组实验,测得相应实验体系的温度升高值()随时间(t)的变化曲线,如图所示。
实验编号 反应物组成
a 粉末
b 粉
c 粉饱和石灰水
d 粉石灰乳
e 粉粉末
回答下列问题:
(1)已知:
①
②
③
则的___________。
(2)温度为T时,,则饱和溶液中___________(用含x的代数式表示)。
(3)实验a中,后基本不变,原因是___________。
(4)实验b中,的变化说明粉与在该条件下___________(填“反应”或“不反应”)。实验c中,前的有变化,其原因是___________;后基本不变,其原因是___________微粒的量有限。
(5)下列说法不能解释实验d在内温度持续升高的是___________(填标号)。A.反应②的发生促使反应①平衡右移
B.反应③的发生促使反应②平衡右移
C.气体的逸出促使反应③向右进行
D.温度升高导致反应速率加快
(6)归纳以上实验结果,根据实验e的特征,用文字简述其发热原理___________。
【答案】(1)-911.9
(2)mol L-1
(3)Ca(OH)2在水中的溶解度小,反应①达到了平衡状态
(4) 不反应 Al和溶液中的OH-发生了反应 OH-
(5)A
(6)实验e中,发生反应①、②和③,反应③中有气体生成,气体的逸出促使反应③向右进行,反应③的发生使得溶液中OH-的浓度减小,促使反应②平衡右移,反应②的发生促使反应①平衡右移,这三步反应都是放热反应,温度升高导致反应速率加快。
【解析】(1)根据盖斯定律可得,①+②+2③可得反应CaO(s)+2Al(s)+7H2O(l)=Ca2+(aq)+2[Al(OH)4]-(aq)+3H2(g),则ΔH4=ΔH1+ΔH2+2ΔH3=(-65.17kJ mol-1)+(-16.73kJ mol-1)+2(-415.0kJ mol-1)=-911.9kJ mol-1。
(2)温度为T时,Ca(OH)2饱和溶液中,Ca(OH)2(s)Ca2+(aq)+2OH-(aq), c(OH-)=2c(Ca2+) ,Ksp[Ca(OH)2]=c(Ca2+) c2(OH-)=x,则c(OH-)=mol L-1。
(3)实验a中,CaO和H2O反应①生成Ca(OH)2,4min后ΔT基本不变,是因为Ca(OH)2在水中的溶解度小,反应①达到了平衡状态。
(4)实验b中,ΔT几乎不变,说明Al粉与H2O在该条件下不反应;实验c中,前3min的ΔT有变化,是因为Al和溶液中的OH-发生了反应,3min后ΔT基本不变,是因为饱和石灰水中OH-的浓度较低,OH-的量有限。
(5)实验d中,发生反应②和③,反应③中有气体生成,气体的逸出促使反应③向右进行,反应③的发生使得溶液中OH-的浓度减小,促使反应②平衡右移,这两步反应都是放热反应,温度升高导致反应速率加快;综上所述,实验d在10min内温度持续升高与反应①无关,故选A。
(6)实验e中,发生反应①、②和③,反应③中有气体生成,气体的逸出促使反应③向右进行,反应③的发生使得溶液中OH-的浓度减小,促使反应②平衡右移,反应②的发生促使反应①平衡右移,这三步反应都是放热反应,温度升高导致反应速率加快。
31.(2022·重庆卷)反应在工业上有重要应用。
(1)该反应在不同温度下的平衡常数如表所示。
温度/℃ 700 800 830 1000
平衡常数 1.67 1.11 1.00 0.59
①反应的△H_____0(填“>”“<”或“=”)。
②反应常在较高温度下进行,该措施的优缺点是_____。
(2)该反应常在Pd膜反应器中进行,其工作原理如图所示。
①利用平衡移动原理解释反应器存在Pd膜时具有更高转化率的原因是_____。
②某温度下,H2在Pd膜表面上的解离过程存在如下平衡:,其正反应的活化能远小于逆反应的活化能。下列说法错误的是_____。
A.Pd膜对气体分子的透过具有选择性
B.过程2的△H>0
C.加快Pd膜内H原子迁移有利于H2的解离
D.H原子在Pd膜表面上结合为H2的过程为放热反应
③同温同压下,等物质的量的CO和H2O通入无Pd膜反应器,CO的平衡转化率为75%;若换成Pd膜反应器,CO的平衡转化率为90%,则相同时间内出口a和出口b中H2的质量比为_____。
(3)该反应也可采用电化学方法实现,反应装置如图所示。
①固体电解质采用______(填“氧离子导体”或“质子导体”)。
②阴极的电极反应式为______。
③同温同压下,相同时间内,若进口Ⅰ处n(CO):n(H2O)=a:b,出口Ⅰ处气体体积为进口Ⅰ处的y倍,则CO的转化率为_____(用a,b,y表示)。
【答案】(1) 优点是升高温度,反应速率较快;缺点是正反应为放热反应,升高温度,平衡逆向移动,产物的转化率较低
(2) Pd膜能选择性分离出H2,平衡正向移动,平衡转化率增大 BD 1:8
(3) 质子导体
【解析】(1)①根据表中的数据,温度越高,平衡常数越小,所以正反应为放热反应,;
②优点是升高温度,反应速率较快;缺点是正反应为放热反应,升高温度,平衡逆向移动,产物的转化率较低;
(2)①Pd膜能选择性分离出H2,平衡正向移动,平衡转化率增大;
②A.Pd膜只允许通过,不允许通过,对气体分子的透过具有选择性,A正