湘教版数学七年级上册 课件:1.2《数轴、绝对值和相反数》(3份打包)

文档属性

名称 湘教版数学七年级上册 课件:1.2《数轴、绝对值和相反数》(3份打包)
格式 zip
文件大小 885.0KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2016-01-22 19:05:10

文档简介

课件13张PPT。数轴你会读温度计吗? (1)温度计刻度的正负是怎样规定的?以什么为基准?基准刻度线表示多少摄氏度?
(2)每摄氏度两条刻度线之间的距离有什么特点? 0 —3 —2 —1 1 2 31、什么是数轴?原点正方向单位长度规定了原点、正方向、单位长度的直线叫做数轴。注意事项:
(1)数轴是一条特殊的直线;
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。点拔0 —3 —2 —1 1 2 3
议一议:怎样画数轴?④ 在数轴上标出1、2、3、—1、—2、—3等各点。① 画直线,定原点。② 从原点向右(或上)的方向为正方向,从原点向左(或下)为负方向。③ 选取适当长度为单位长度。(1)(2)(3)(4)想一想:下列各图是数轴吗?说明你的理由。0 —3 —2 —1 1 2 3 —3 —2 —1 1 2 3 4—3 —2 —1 1 2 3
00
想一想:1和-1到原点的距离相等吗?0 1 2 —2 —1练: 在下面数轴上,A,B,C,D各点分别表示什么数? D C B A
(4) D点表示—1.5 (1)A 点表示2; (2) B 点表示0.25;(3)C点表示—0.75;解:....0 —3 —2 —1 1 2 31、如何用数轴上的点来表示分数或小数?
如:1.5, — — 怎样表示。议一议:2、所有有理数都可以用数轴上的点来表示吗?23..它们是一一对应的关系所有的有理数都可以用数轴上的点表示!解:1-54●●●●●-2.50注意:
①把点标在线上;
②把数标在点的上方, 以便观看。1、数轴的三要素:原点、单位长度和正方向.2、一般地,设a是一个正数,则数轴上表示数a的点在原点的 右 边,与原点的距离是 a 个单位长度;表示数-a的点在原点的 左 边,与原点的距离是 - a个单位长度.习题1、判断题
⑴直线就是数轴
⑵数轴是直线
⑶任何一个有理数都可以用数轴上的点来表示
⑷数轴上到原点距离等于3的点所表示的数是+3
⑸数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0( )
⑹在数轴上离表示数+2的点3个单位长度的数只有5
⑺数轴上的两个点可以表示同一个有理数(  )2、在数轴上距离原点2.5个单位长度的点所表示的数是 .3、如图,点A表示的数是4,那么点B表示的数是 .4、数轴上的点P与表示-3的点A的距离是2,点P表示的有理数是 .±2.5-1-5或1O5、选择题:下列说法正确的是( )
A.数轴上的点都表示整数.
B.数轴上表示5与-5 的点分别在原点的两侧,并且到原点的距离都等于5 个单位长度.
C.数轴包括原点与正方向两个要素.
D.数轴上的点只能表示正数和零.B课件8张PPT。2、 在数轴上,2与-2,3与-3以上数字分别距原点有多远?复习引入1、化简下列各数的符号
-[―(+7.2)]=________ ;
-{-[+(-7)]}=_______。7.2-7绝对值 自学
1、自学课本P11---P12的内容。
2、弄清如下问题:
(1)什么叫绝对值?绝对值的符号是什么?
(2)正数、0、负数的绝对值分别是么?
(3)绝对值有什么性质?1、在数轴上,表示一个数的点与原点的距离叫作这个数的绝对值。符号“∣ ∣”。
例如:-2的绝对值等于2,记作∣-2∣=2;2的绝对值等于2,记作∣2∣=2。2、一个正数的绝对值等于它本身;
一个负数的绝对值等于它的相反数;
0的绝对值等于0;
互为相反数的两个数的绝对值相等。3、绝对值一定是一个非负数(正数或0)。点拨当堂训练
1、填空:
(1)、 -7的绝对值是 。
(2)、 绝对值是2.3的数是 。
(3)、若α与β互为相反数,则
∣α∣____∣β∣
(4)、绝对值小于4的整数有 个,分别______,其中最小的数是 。
绝对值的几何意义绝对值的代数意义互为相反数的两个数的绝对值相等即:|a|=|-a|   若|x|=a,那么x=  ±a两个负数,绝对值大的负数反而小.课堂作业:
1、若|a|=8.7,那么a=_____.
2、写出下列各数的绝对值:
2.5 - 8 - - 0.18 5
3、若|x+5|=8,那么x+5=_____.
4、一个数的绝对值是6,那么这个数是:_____.
5、已知|x-4|+ |y-7|=0,则X=_____,y=____。课件11张PPT。复习引入:⑴数轴上与原点距离是2 的点有——个,这些点表示的数是--------;与原点的距离是5 的点有---------个,这些点表示的数是--- -。数轴上与原点的距离是a的点有两个,
它们分别在原点的左右,表示-a和a,我们可以发现:这两点到原点的距离相等两2和-2两5和-5比如:数字相同符号不同和相反数自学
自学课本P9---P10,思考如下问题:
(1)什么是相反数?相反数指几个数的关系?
(2)怎么求一个数的相反数?数a的相反数是多少?
(3)相反数在数轴上的特征是什么?
(4)多重符号怎么化简?1、如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数,或者说它们互为相反数。0的相反数是0数a的相反数记为-a2、在数轴上,表示互为相反数的两个点,位于原点两侧,并且与原点的距离相等。3、多重符号的化简,一个正数前面不管它有多少个“+”,可以全部省去不写;一个正数前面有偶数个“-”号,也可以把“-”一起去掉;一个正数的前面有奇数个“-”号,则化简后只保留一个“-”号。点拔
1、5的相反数是(    )   
-6的相反数是(    )
-(-4)=_________。     
-〔-[+(-3)]〕=_________。       
2、若α、β互为相反数,则α+β=_______。     
3、-(-4)是   的相反数,
-(-2)的相反数是      。 -564-30-4-2互相讨论 1. 判断:(1)-5是5的相反数( );

(2)5是-5的相反数( );

(3) 与 互为相反数( );

(4)-5是相反数( ).
练习课堂练习2.-1.6是____的相反数,___的相反数是0.3.
3.下列几对数中互为相反数的一对为( ).
A. 和 B. 与 C. 与
4.5的相反数是____; 的相反数是___; 的相  反数是____.
5.若 ,则 ;
若 ,则 .
6.若 是负数,则 是 ___数;若 是负数,则  是______数.
课堂小结本节课学习了以下内容:
1.相反数的概念:只有符号不同的两个数,我们说其中一个是另一个的相反数.
2. 表示求 的相反数.1、指出下列各数的相反数
2.5 ,a,d+c ,
2、填空
①、一个数的相反数的倒数是 ,则这个数是      。
②、若-x = 10, 则x的相反数是     ____,x是______。当堂检测3、若α、β互为相反数,则α+β=     。
4、化简下列各数的符号
-[―(+7.2)]= ;
-{-[+(-7)]}=_______。