新鲁教版六年级数学下册:6.7 完全平方公式(课件14张PPT+教案+练习等9份打包)

文档属性

名称 新鲁教版六年级数学下册:6.7 完全平方公式(课件14张PPT+教案+练习等9份打包)
格式 zip
文件大小 328.7KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2016-01-24 13:06:44

文档简介

学生的知识技能基础:学生通过上一节课的学习,已经经历了探索和推导完全平方公式的过程,并能运用公式进行简单的计算,同时通过前面的学习,学生已经基本掌握了整式的乘法运算,并能简单运用平方差公式和完全平方公式进行计算,这些知识的掌握为本节课的学习奠定了良好的知识技能基础. 学生活动经验基础:在前面几节课的学习中,学生已经经历了探索和应用乘法公式的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.本节课是对乘法公式的综合应用,同时乘法公式又是整式乘法中具有特殊结构的一类问题,从而让学生经历由特殊到一般的过程,学会在解题之前进行观察与思考是至关重要的,而这在平方差公式的灵活运用中学生同样也积累了一定的活动经验.
在复习过程中,学生能够顺利地回答出平方差公式的内容,而对于其结构特点及应用时的注意事项,通过学生之间的相互补充,绝大多数学生也得以掌握。在复习中既把旧知识得以复习,同时学生也会主动的去回顾平方差公式一节的学习过程,从而为本节课的类比学习奠定了基础。
问题提出后,学生能够主动地去寻找解决问题的方法。同时问题要求用不同的形式来表示总面积,这就要求学生从不同的角度来进行考虑,从而对于学生的思维提出了挑战。不过由于前面列代数式一部分内容的学习,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识。从而在学生的自主探索过程中引出了完全平方公式,使学生有了一个直观认识。在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽。
在认识完全平方公式的环节的设计符合学生的认知水平和认知过程。在第一个活动的教学中应重视学生对于算理的理解,让学生尝试说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力。在第二个活动中既是对于第二环节用几何解释验证两数和的完全平方公式的巩固,同时也是对于学生数形结合意识的一种培养,绝大多数学生能够通过交流合作得以掌握。通过几个活动学生能够初步地掌握了完全平方公式,并在推导过程中培养了数学的基本能力。
首先放手让学生独立来解决第一个题目,学生出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的a与b,从而运用不同的方法和思路,解决问题。在活动中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发,在此基础上教师把上面总结的口诀再次完善,帮助学生突破难点,教师的主导作用得以体现。
完全平方公式教学设计
【教学目标】
1、知识与技能:
体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算。
过程与方法:
通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力。培养学生的数形结合能力。
3、情感态度价值观:
体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心。
【教学重点】
1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。
2、会运用公式进行简单的计算。
【教学难点】
1、完全平方公式的推导及其几何解释。
2、完全平方公式的结构特点及其应用
【教学过程】
一、复习回顾
1、平方差公式(a+b)(a?b)=a2-b2
公式的结构特征:
左边是两个二项式的乘积,即两数和与这两数差的积.右边是两数的平方差.
2、应用平方差公式的注意事项
(1) 弄清在什么情况下才能使用平方差公式:
(对于一般两个二项式的积, 看准有无相等的“项”和符号相反的“项”;
(仅当把两个二项式的积变成公式标准形式后,才能使用平方差公式。
(2)在解题过程中要准确确定a和b、对照公式原形的两边, 做到不弄错符号、当第一(二)数是乘积且被平方时 要注意添括号, 是运用平方差公式进行多项式乘法的关键。
3、多项式的乘法法则是什么?(a+b)(m+n)=am+an+bm+bn
二.创设问题情境、探究新知
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种。(如图)
a b ⑴ 四块面积分别为: 、 、 、 ;
b ⑵ 两种形式表示实验田的总面积:
① 整体看:边长为 的大正方形,S= ;
a a ②部分看:四块面积的和,S= 。
a b
总结 : 通过以上探索你发现了什么?
问题1:你能用多项式的乘法法则来说明它成立吗?
问题2:你能说说(a+b)2=a2+2ab+b2
这个等式的结构特点吗?用自己的语言叙述。
(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)
问题3:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证。
总结:我们把(a+b)2=a2+2ab+b2 (a–b)2=a2–2ab+b2称为完全平方公式。
问题:① 这两个公式有何相同点与不同点?
② 你能用自己的语言叙述这两个公式吗?
(学生交流,教师归纳总结:)
  语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍。
强化记忆:首平方,尾平方,二倍乘积放中央,加减看前方。
辩一辩:
下列计算是否正确,如何改正。
(1)(a+b)2=a2+b2
(2) (a-b)2=a2-b2
(3) (a+2b)2=a2+2ab+2b2
三〉、例题讲解,巩固新知
例1:利用完全平方公式计算
(1)(x+2y)2 (2) (x-2y)2
交流总结:运用完全平方公式计算的一般步骤
(1)确定首、尾,分别平方;
(2)确定中间系数与符号,得到结果。
四、练习巩固
练习1:利用完全平方公式计算
(1) (2)
(3)(n+1)2 -n2 (4)(4x+0.5)2
(5)( )2 (6) (2X2-3Y2)2
五、变式练习
例2 利用完全平方公式计算:
(1) (-1-2x)2 ; (2) (-2x+1)2
计算 (1)( )2
(2)(-cd+ )2 (3)(- )2
当堂达标
1、下列计算是否正确?如不正确如何改正?
① ② (3)
2、选择
(1)代数式2xy-x2-y2=( )
A、(x-y)2 B、(-x-y)2 C、(y-x)2 D、-(x-y)2
(2).等于( )
A. B. C. D.
(3).若,那么A等于( )
A. B. C.0 D.
六、畅谈收获,归纳总结
学生总结:
教师总结:
1、本节课我们又学习了乘法的完全平方公式:
2、我们在运用公式时,要注意以下几点:
(1)公式中的字母a、b可以是任意代数式;
(2)公式的结果有三项,不要漏项和写错符号。
(3)可能出现① ② 这样的错误。也不要与平方差公式混在一起。
七、作业设置
习题6.14 知识技能 1、2题
八、板书设计
1.8完全平方公式(1)
1、复习旧知,引入新知 3、完全平方公式: 4、例题讲解 5、练习巩固
(a+b)2=a2+2ab+b2 例1 6、变式练习
2、创设问题情境,探究新知 (a–b)2=a2–2ab+b2 强化记忆: 交流总结:
教材分析
一、重点、难点分析
  本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。
  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:
  这两个公式是根据乘方的意义与多项式的乘法法则得到的.
  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.
  2.只要符合这一公式的结构特征,就可以运用这一公式.
  在运用公式时,有时需要进行适当的变形,例如可先变形为 或 或者 ,再进行计算.
  在运用公式时,防止发生 这样错误.
  3.运用完全平方公式计算时,要注意:
  (1)切勿把此公式与公式混淆,而随意写成.
  (2)切勿把“乘积项” 中的2丢掉.
  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.
  4.与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.
二、教法建议
  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解如何正确地使用完全平方公式进行计算.
  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.
  3.如何使学生记牢公式呢?我们注意了以下两点.
  (1)既讲“法”,又讲“理”
  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.
  (2)讲联系、讲对比、讲特点
对于类似的内容学生容易混淆,比如在本节出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.
案例事件和过程:
本节课设计了六个教学环节:回顾与思考、情境引入、初识完全平方公式、再识完全平方公式、又识完全平方公式、课堂小结。
第一环节 回顾与思考
活动内容:复习已学过的平方差公式
平方差公式:(a+b)(a-b)=a2-b2 ;
公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
2.应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
活动目的:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力。而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要。
实际教学效果:在复习过程中,学生能够顺利地回答出平方差公式的内容,而对于其结构特点及应用时的注意事项,通过学生之间的相互补充,绝大多数学生也得以掌握。在复习中既把旧知识得以复习,同时学生也会主动的去回顾平方差公式一节的学习过程,从而为本节课的类比学习奠定了基础。
第二环节 情境引入
活动内容:出示幻灯片,提出问题。
一块边长为a米的正方形实验田,由于效益比较高,
所以要扩大农田,将其边长增加b米,形成四块实验田,
以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
活动目的:数学源自于生活,通过生活当中的一个实际问题,引入本节课的学习。从而在学生运用旧知计算和比较实验田的面积当中引出完全平方公式。由于实验田的总面积有多种表示方式,通过对比这些表示方式可以使学生对于公式有一个直观的认识。同时在古代人们也是通过类似的图形认识了这个公式。在列代数式解决问题的过程当中,通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发。
实际教学效果:问题提出后,学生能够主动地去寻找解决问题的方法。同时问题要求用不同的形式来表示总面积,这就要求学生从不同的角度来进行考虑,从而对于学生的思维提出了挑战。不过由于前面列代数式一部分内容的学习,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识。从而在学生的自主探索过程中引出了完全平方公式,使学生有了一个直观认识。在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽。
第三环节 初识完全平方公式
活动内容:1. 通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a-b)2=a2-2ab+b2.
引导学生利用几何图形来验证两数差的完全平方公式。
分析完全平方公式的结构特点,并用语言来描述完全平方公式。
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。
活动目的:第一个活动是让学生在上面讨论的基础上,从代数运算的角度运用多项式的乘法法则,推导出两数和的完全平方公式,并且进一步推导出两数差的完全平方公式。在教学中学生有条理的思考和语言表达能力得以培养。
第二个活动使学生再次从几何的角度来验证两数差的完全平方公式。从而学生经历了几何解释到代数运算,再到几何解释的过程,学生的数形结合意识得以培养,并且从不同的角度推导出了公式,并且加以巩固。
第三个活动在前面的基础上,加以总结,使得学生从形式上初步地认识了完全平方公式。
实际教学效果:此环节的设计符合学生的认知水平和认知过程。在第一个活动的教学中应重视学生对于算理的理解,让学生尝试说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力。在第二个活动中既是对于第二环节用几何解释验证两数和的完全平方公式的巩固,同时也是对于学生数形结合意识的一种培养,绝大多数学生能够通过交流合作得以掌握。通过几个活动学生能够初步地掌握了完全平方公式,并在推导过程中培养了数学的基本能力。
第四环节 再识完全平方公式
活动内容: 例1 用完全平方公式计算:
(1) (2x?3)2 ; (2) (4x+5y)2 ; (3) (mn?a)2
2. 总结口诀:首平方,尾平方,两倍乘积放中央。
3. 巩固练习。
(1)计算:
; ;(n+1)2-n2 ;(4x+0.5)2 ;(2x2-3y2)2
(2)纠错练习:指出下列各式中的错误,并加以改正:
(1) (2a?1)2=2a2?2a+1;
(2) (2a+1)2=4a2 +1;
(3) ((a?1)2=(a2?2a?1.
活动目的:应用完全平方公式进行简单的计算。同时例1三个题目的设计上有一定的梯度,从而总结出进行简单计算的一般口诀,并加以巩固落实。
实际教学效果:对照公式,进行独立的简单计算,体会公式在解题中的应用,进一步熟悉公式。并通过小组交流,自我检验,巩固反馈。考察个人的实际运用能力,并及时查漏补缺。在此基础上由教师总结出口诀,帮助学生进一步认识完全平方公式,并加以巩固练习。
第五环节 又识完全平方公式
活动内容:1. 例2 利用完全平方公式计算:
(1) (-1-2x)2 ; (2) (-2x+1)2
2. 进一步完善口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
活动目的:例2是对课本内容的补充,从而使得学生从更深的一个角度来认识完全平方公式,防止解题时中间项的符号出现问题,并能在解题中通过灵活的变形来运用公式,解决问题。并对上面总结的口诀进行进一步的完善。
实际教学效果:首先放手让学生独立来解决第一个题目,学生出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的a与b,从而运用不同的方法和思路,解决问题。在活动中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发,在此基础上教师把上面总结的口诀再次完善,帮助学生突破难点,教师的主导作用得以体现。
第六环节 课堂小结
活动内容:1. 完全平方公式和平方差公式不同:
形式不同.
结果不同:完全平方公式的结果是三项,即 (a (b)2=a2 (2ab+b2;
平方差公式的结果是两项, 即(a+b)(a?b)=a2?b2.
2. 解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、
不弄错符号、2ab时不少乘2。
3. 口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。
实际教学效果:学生畅所欲言自己的实际收获,达到了本节课的教学目标。
完全平方公式练习
一、选择题
1.下列等式不成立的是( )
A、 B、
C、 D、
2.下列各式中计算结果是的是( )
A、 B、 C、 D、
3.计算:的结果等于( )
A、 B、 C、 D、
4.若,则因式( )
A、 B、 C、 D、
二、填空题
5.( )=.
7.-
8. = .
9. .
三、解答题
12.计算:① ②

③ ④