山东省青岛市2024-2025学年高三上学
期期初调研检测数学试题
2024年高三年级期初调研检测
数学参考答案及评分标准
一、单项选择题:本题共 8小题,每小题 5分,共 40分.
1--8:BABD BCAC
二、多项选择题:本题共 3小题,每小题 6分,共 18分.
9.BC 10.ABC 11.ABD
三、填空题:本题共 3个小题,每小题 5分,共 15分.
12. 1 3 9 2; 13. ; 14. .
2 8
四、解答题:本题共 5小题,共 77分.解答应写出文字说明,证明过程或演算步骤.
15.(13分)
解:(1)设事件 A表示在一次猜谜活动中有一方获胜,······································· 1分
事件 A包含两种情况:甲猜对乙猜错或甲猜错乙猜对,······································· 2分
2 1 2 1 1
则 P(A) (1 ) (1 ) ,·························································· 3分
3 2 3 2 2
1
所以在一次活动中,有一方获胜的概率为 ·························································4分
2
(2)由题意知,猜谜次数 X 可能取值为1, 2,3 ···················································5分
P(X 1) P(A) 1 ···················································································7分
2
P(X 2) P(AA) (1 1 ) 1 1 ·······························································9分
2 2 4
P(X 3) P(AA) 1 1 (1 )2 ·································································11分
2 4
所以 X 的分布列为
X 1 2 3
1 1 1
P
2 4 4
X E(X ) 1 1 2 1 3 1 7期望为 ······················································ 13分
2 4 4 4
16.(15分)
解:(1)因为 2cos A(c cos B b cosC) 2a,
由正弦定理得 2cos A(sinC cos B sin B cosC) 2 sin A,····························· 2分
即 2cos Asin(B C) 2 sin A,··································································4分
即 cos A 2 π , A ················································································ 7分
2 4
数学答案 第 1页(共 5页)
(2)作CD AB于D,因为CD AD 1 AB,所以D在线段 AB上··············· 9分
3
BD 2所以 AB ························································································ 11分
3
所以 sin BCD BD 2 5 , cos CD 5 BCD ·································· 13分
BC 5 BC 5
sinC sin( ACD BCD) 2 5 2 2 5 3 10所以 .·················· 15分
2 5 2 5 10
17.(15分)
解:(1)因为 PD 平面 ABCD,BC ABCD ,所以 BC PD,
又 BC CD,CD PD D ,所以 BC 平面 PCD ·········································· 2分
又DE 平面PCD,所以DE BC ,
又DE PC,PC BC C,所以DE 平面 PBC ,······································· 4分
又 PB 平面 PBC ,所以DE PB,
又 EF PB, EF DE E ,所以 PB 平面DEF ········································ 6分
(2)以D为原点,DA,DC,DP所在直线分别为 x轴, y轴, z 轴,
建立空间直角坐标系,·················································································· 7分
设DC 1,则 P(0,0,1),D(0,0,0), A(1,0,0),B(1,1,0),C(0,1,0),E(0, 1 , 1),
2 2
1 1 EP (0, , ),PA (1,0, 1),设 PG PB ( , , ), [0,1],则
2 2
EG EP PG ( , 1 1 , ),
2 2
| EG PA | | 2
1
|
所以 cos 45 1 2 ,解得: ························ 10分
| EG | | PA | 2 22 3 2 1
2
DG (1 , 1 , 1故 ),
2 2 2
n DE 0 y z 0
设平面DEG的一个法向量为m (x1, y1, z
1 1
1),则 ,即 ,
n DG 0 x1 y1 z1 0
令 y1 1,得m (0,1, 1) ··········································································· 12分
取平面DEF 的法向量为 n BP ( 1, 1,1) ···················································· 14分
设平面DEG 与 平 面DEF 的夹角为 ,
cos | m n | 6则 ·············································································15分
|m | | n | 3
数学答案 第 2页(共 5页)
18.(17分)
解:(1)由题知: 4 12 1 m,解得m 3 ···················································· 1分
设直线 P1Q1 : y x,记Q1( x2 , y2 ),P2 (x2 , y2 ),Q2 ( x3 , y3),P3(x3 , y3) ,
由C和直线 P1Q1均关于原点对称得:Q1( 1, 1),即 P2坐标为 (1, 1) ···················· 3分
所以直线 P2Q2 : y 1 x 1,即直线 P2Q2 : y x 2,
y x 2
联立方程 2 ,得3x 4x 7 0 x 1
7 7
;解得 ,即 x ,
4x
2 y2 3 3 3 3 3
13 7 13
又因为 y3 x3 2 ,所以P3坐标为 ( , ) ········································· 5分3 3 3
(2)(法 1)设直线 PnQn : y x xn yn ,代入 4x
2 y2 3得:
3x2 2(x y )x (x y )2n n n n 3 0 ,··························································· 6分
x 2 2 5 2所以 n xn 1 (xn yn ),解得 xn 1 xn (xn yn ) xn yn ,3 3 3 3
又因为 yn 1 x x y
8 x 5n 1 n n n yn ,··················································· 9分3 3
因为 2x1 y
2x y 6x 3y
1 1 0,所以 n 1 n 1 n n 3,2xn yn 2xn yn
数列{an}是公比为3的等比数列·····································································10分
yn 1 yn
1, (1)
xn 1 xn
(法 2)因为 4x2n y
2
n 3, (2) ,································································ 6分
4x2 n 1 y
2
n 1 3, (3)
y y 4(x x ) 2(yn 1 yn ) 2(x x )因为 1 n 1 n n 1 n n 1 n ,
x n 1 xn yn 1 yn 4(xn 1 xn ) (yn 1 yn )
所以 4xn 1 2yn 1 (4xn 2yn ) 2xn 1 yn 1 2xn yn
所以 2xn 1 yn 1 3(2xn yn ) ,又因为 2x1 y1 1 0,
2x y
所以 n 1 n 1 3,数列{a
2x y n
}是公比为3的等比数列;···································10分
n n
n 1
2x y (2x y )3n 1 3n 1
2x
n
yn 3
(3)由(2)知: n n 1 1 ,即 ,
2 4xn y
2
n 3 2x y
3
n n
3n 1
数学答案 第 3页(共 5页)
x 1 (3n 1 3 n n 1 )
解得 4 3 ·············································································12分
y 1 ( 3 3n 1)
n 2 3n 1
x x y y 5
因为OG ( n n 2 , n n 2 ) ( (3n 1 1 ), 5 ( 1 n 1
2 2 4 3 n 2 3 n
3 )) ,
又因为OP (x , y ) 3 1 3 1 ( (3n 1 ), ( 3n 1n 1 n 1 n 1 n n )),4 3 2 3
5 5
所以OG OPn 1,同理得:OH OPn 2 ,··············································· 16分3 3
S 9
所以 1 ·····························································································17分
S2 25
19.(17分)
解:(1)(ⅰ)由题知,当a 0时, f (x) 2ln(1 x) 2x,
2 2x
所以 f (x) 2 ······································································· 1分
x 1 x 1
当 x ( 1,0)时, f (x) 0,所以 f (x)在 ( 1,0)上单调递增;
当 x (0, )时, f (x) 0,所以 f (x)在 (0, )上单调递减;··················· 2分
所以, f (x) f (0),所以0为 f (x)在 ( 1, )上的最大“ 点”·························· 3分
(ⅱ)由(ⅰ)知: ln(1 x) x ········································································4分
若 a 0,则 f (x) 2ln(1 x) 2x ax ln(1 x) 0 ;
此时, f (x) f (0),不可能存在“ 点”,符合题意····································· 5分
a 0 2 ax 2 a若 ,则 f (x) a ln(1 x) 2 a ln(1 x) a 2 ,
1 x 1 x
2
g(x) a ln(1 x) 2 a a 2 a
a[x ( 2)]
令 a 2 ,则 g (x) a2 2 ····· 6分1 x 1 x (1 x) (1 x)
若 a 1 2,则 2 0, g (x) 0, g(x)在 (0,1)上单调递增,且 g(0) 0;
a
所以,当 x (0,1)时, f (x) 0, f (x)在 (0,1)上单调递增;
所以1为 f (x)的“ 点”,不合题意···························································· 7分
0 a 1 2若 ,则 2 0,
a
2
当 x (0, 2)时, g (x) 0,所以 g(x)在 (0, 2 2)上单调递减;
a a
当 x 2 2 ( 2, )时, g (x) 0,所以 g(x)在 ( 2, )上单调递增;
a a
数学答案 第 4页(共 5页)
所以 g(x) g( 2 2)且 g(2 2) g(0) 0,
a a
2 2 2 2 2
又因为 ln(1 x) x,1 x e x,所以 1 e a ,故 2 e a 3 e a 1,
a a
2 2
因此 g(ea 1) a ln(1 ea 1) a 2 a 0 ,
2
所以,存在 (2 2,e a 1),使得 g( ) 0,
a
当 x (0, )时, f (x) 0, f (x)在 (0, )单调递减;
当 x ( , )时, f (x) 0, f (x)在 ( , )单调递增;
因为 f (x)不存在“ 点”,所以 0 a 1f (1) 0,
2
又当 a 1时, f (x)在 (0,1)上单调递增,得 f (1) 3ln 2 2 0,即 ln 2 ,
3
2 2 1 2因此 ,解得0 a 2,
ln 2 ln 2
2
综上, a的取值范围为 ( , 2] ······························································10分
ln 2
(2)假设 f (x)的“ 点”有 k个,从小到大依次为 a1,a2 , ,ak,由“ 点”定义可知:
因为 f (a1) f (1)且 f (1) f (a1 1),所以 f (a1) f (1) f (a1) f (a1 1) 1 ·····11分
对于1 i k ,因为 f (ai ) f (ai 1)且 f (ai 1) f (ai 1),
所以 f (ai ) f (ai 1) f (ai ) f (ai 1) 1 ······················································15分
这样就有:
f (a1) f (1) 1,
f (a2 ) f (a1) 1,
……
f (ai ) f (ai 1) 1,
……
f (ak ) f (ak 1) 1,
迭加得: f (a1) f (0) f (a2 ) f (a1) f (a k) f (a k 1) f (a k) k ,
又因为 f (m) f (ak ),所以 f (m) k ,
综上, f (x) 在D上的“ 点”个数不小于 f (m) ················································ 17分
数学答案 第 5页(共 5页)