中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
人教版六年级上册数学第三单元分数除法单元训练
一、选择题
1.下面算式中,得数小于1的是( )。
A. B. C.
2.一项工程,甲乙两队单独做各需8天完成,他们合作需要( )
A.16天 B.4天 C.8天
3.4吨比5吨少( )
A.20% B.25% C.80%
4.a是一个不等于0的自然数,下面算式中得数最大的是( )。
A.a÷ B.a× C.a÷
5.下面三句话中正确的是( )
A.200个零件全部合格,合格率是200%
B.甲数除以乙数,等于甲数乘除数的倒数
C.真分数的倒数一定都是假分数
6.修一段的路,甲队单独修要8天,乙队单独修要12天,现在两队合修需要几天完成?下面的解答方法中,( )是错误的。
A. B. C.
二、填空题
7.12m的是( )m;( )m的是4m;( )m减少它的是12m;9m增加它的是( )m。
8.若a和b互为倒数,则÷=( ),×=( )。
9.一台织布机小时可织布米,这台织布机每小时可织布( )米;按照这个速度织7小时可以织布( )米。
10.粮站运进一批粮食,卖出其中的后,又运进38吨,这时粮站的粮食正好是第一次运进粮食的,粮站第一次运进粮食( )吨。
11.一项工程甲单独做8天完成,乙单独做6天完成,两队合做( )天可以完成这项工程。
12.一桶矿泉水,5天喝了这桶矿泉水的。照这样计算,喝完这桶矿泉水需( )天。
13.正方体的棱长总和是,则它的表面积是( ),体积是( )。
14.一堆3吨的煤,如果每天烧,可以烧( )天;如果每天烧吨,可以烧( )天。
15.在括号里填上“>”“<”或“=”。
( ) ( ) ( )
16.A、B是两个不同的非零自然数,A乘B再乘B的倒数,结果是( ).
17.大头儿子看一本80页的《昆虫王国的奥秘》,前6天看完了总页数的。照这样的速度,全部看完共需要( )天。
18.卡车运货物,4次运走这堆货物的,平均每次运走这堆货物的( )。照这样计算,8次一共运走这堆货物的( )。
三、判断题
19.如果数a和数b互为倒数,说明a和b是相互依存的。( )
20.(a,b均不为0)的倒数比它本身大,一定是个真分数。( )
21.÷4和×4的计算结果相同. ( )
22.得数是1的两个数互为倒数。( )
23.甲数比乙数多,是把甲数看作单位“1”。( )
24.甲数除以乙数,等于甲数除以乙数的倒数。( )
25.已知甲数除以乙数的商是,那么乙数比甲数少。( )
26.男生比女生少,女生比男生多。( )
四、计算题
27.直接写得数
28.脱式计算。
6.4×3.5÷
29.解方程。
(1) (2) (3)
五、解答题
30.朝晖小学生物小组的同学收集标本,收集到的蝴蝶是蜻蜓的,蜻蜓是甲壳虫的,蝴蝶有12只,甲壳虫有多少只?
31.中国“复兴号”动车每小时运行350千米,比“和谐号”快,“和谐号”动车每小时运行多少千米?(先画线段图分析,再写出数量关系式,最后解答。)
32.一天,一位农夫准备了21个同样的油壶去油坊装油.他把其中的7个壶装满了,还有7个壶分别装了 壶油,最后还剩下7个空壶.他把油和壶平分给三个儿子,每人分得的油要一样多,壶也要一样多.农夫没用倒来倒去,就分出来了.你知道怎样分吗?
33.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?
34.食堂买回一些大米和面粉,面粉的重量是大米的,大米用去54千克后,余下的大米重量是面粉的。食堂买回大米和面粉共多少千克?
35.甲、乙两辆汽车同时从两地相向开出,当甲车行完全程的时与乙相遇,相遇后乙车继续以每小时50千米的速度前进,用2.5小时行完余下的路程,两地相距多少千米?
中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
参考答案:
1.A
【分析】根据分数乘法的计算方法:分子乘分子,分母乘分母;分数除法的计算方法:除以一个数相当于乘这个数的倒数,再按照分数乘法的计算方法计算即可;先把三个选项的结果计算出来,找出得数小于1的即可。
【详解】A.=,<1;符合题意;
B.==,>1;不符合题意;
C.==,>1,不符合题意。
故答案为:A
【点睛】本题主要考查分数乘除法的计算,熟练掌握它的计算方法并灵活运用。
2.B
【详解】1÷(+)
=1÷
=4(天)
故答案为B.
【点睛】把工作总量看作单位“1”,用工作总量÷工作时间=工作效率,据此分别求出甲、乙的工作效率,然后用工作总量÷甲、乙的工作效率之和=合作的时间,据此列式解答.
3.A
【详解】试题分析:先求出4吨比5吨少几吨,然后用少的吨数除以5吨即可.
解:(5﹣4)÷5,
=1÷5,
=20%;
故选A.
点评:本题是求一个数是另一个数的几分之几,关键是看把谁当成了单位“1”,单位“1”的量为除数.
4.A
【分析】根据一个数(0除外),乘小于1的数,积比原数小;除以小于1的数,商比原数大;除以大于1的数,商比原数小,进行分析。
【详解】A.a÷>a
B.a×<a
C.a÷<a
得数最大的是a÷。
故答案为:A
【点睛】关键是掌握分数乘除法的计算方法。
5.C
【详解】试题分析:根据题意,对各题进行依次分析、进而得出结论.
解:A、200个零件全部合格,合格率是200%,说法错误,应为100%;
B、甲数除以乙数,等于甲数乘除数的倒数,说法错误,因为0没有倒数,所以乙数不能为0,所以此题成立的前提是:乙数不能为0(即0除外);
C、因为真分数是分子小于分母的分数,所以真分数的倒数大于1,即都是假分数;
故选C.
点评:此题涉及的知识点较多,但都是基础题,只要认真,应容易解答,注意基础知识的灵活运用.
6.B
【解析】(1)把路的长度看作单位“1”,先求出两队工作效率和,再依据工作时间=工作总量÷工作效率即可解答;
(2)先依据工作效率=工作总量÷工作时间,求出两队每天修路长度,再求出两队工作效率和,最后根据工作时间=工作总量÷工作效率即可解答。
【详解】
=
=(天)
=
=
=(天)
A和C是正确的,B是错误的;
故选:B。
【点睛】本题主要考查学生依据工作时间,工作效率以及工作总量之间数量关系解决问题的能力。
7. 4 24 15 12
【分析】(1)求12m的是多少m,把12m看作单位“1”,单位“1”已知,根据分数乘法的意义解答;
(2)求多少m的是4m,把要求的米数看作单位“1”,单位“1”未知,根据分数除法的意义解答;
(3)求多少m减少它的是12m,把要求的米数看作单位“1”,则12m是它的(1-),单位“1”未知,根据分数除法的意义解答;
(4)求9m增加它的是多少m,把9m看作单位“1”,则要求的米数是9m的(1+),单位“1”已知,根据分数乘法的意义解答。
【详解】(1)12×=4(m)
12m的是4m;
(2)4÷
=4×6
=24(m)
24m的是4m;
(3)12÷(1-)
=12÷
=12×
=15(m)
15m减少它的是12m;
(4)9×(1+)
=9×
=12(m)
9m增加它的是12m。
8. 64
【分析】乘积是1的两个数互为倒数。
分数除法的计算法则:一个数除以分数,等于这个数乘分数的倒数。
分数乘分数的计算法则:分子与分子相乘的积作为分子,分母与分母相乘的积作为分母。
已知a和b互为倒数,则ab=1;根据分数除法、分数乘法的计算法则,分别计算÷、×,并把ab=1代入式子中,即可求出两个算式的得数。
【详解】因为a和b互为倒数,所以ab=1;
÷=×===64
×==
若a和b互为倒数,则÷=64,×=。
9. 20
【分析】根据工作总量÷工作时间=工作效率,用除以即可求出这台织布机每小时可织布的米数;根据工作效率×工作时间=工作总量,用这台织布机每小时可织布的米数乘7即可求解。
【详解】÷=(米)
×7=20(米)
则这台织布机每小时可织布米;按照这个速度织7小时可以织布20米。
【点睛】本题考查分数乘除法,明确工作总量、工作时间和工作效率之间的关系是解题的关键。
10.120
【分析】设第一次运进粮食x吨,根据题意列出方程x-x+38=x,解出此方程即可。
【详解】x-x+38=x
x+38=x
x-x=38
x-x=38
x=38
x=38÷
x=38×
x=120
【点睛】本题关键在于掌握根据题目所给条件列出等式方程并求解。
11.
【分析】由题意,甲每天完成这项工程的1÷8=,乙每天完成这项工程的1÷6=,则甲乙合做一天,完成这项工程的+=。最后根据:工作时间=工作总量÷工作效率来计算两队合做完成的天数为1÷=(天)。
【详解】1÷(+)
=1÷(+)
=1÷
=(天)
【点睛】解答本题,需要我们把这项工程的工作总量看作单位“1”,并能够用分数的形式来分别表示甲乙的工效,再结合分数除法的意义列式计算。
12.15
【解析】略
13.
【分析】由正方体的棱长之和求出正方体的棱长,根据正方体的表面积和体积公式计算即可。
【详解】正方体的棱长:÷12=(m)
正方体的表面积:××6=(m2)
正方体的体积:××=(m3)
【点睛】灵活运用正方体的棱长之和公式计算出正方体的棱长是解答本题的关键。
14. 8 24
【分析】将煤的质量看作单位“1”,1÷每天烧的对应分率=烧的天数;煤的质量÷每天烧的质量=烧的天数,据此列式计算。
【详解】1÷=8(天)
3÷=24(天)
一堆3吨的煤,如果每天烧,可以烧8天;如果每天烧吨,可以烧24天。
【点睛】关键是掌握分数除法的计算方法,除以一个数等于乘这个数的倒数。
15. = < >
【分析】①因为右边的除法算式经过计算,能够得到左边的式子,故它们是相等的;
②先将右边的式子转化为乘法算式,就可利用积与乘数的关系来判断大小;
③需要分别计算出左右两边的式子的结果,再比较。
【详解】①=
②=,因为,所以<,即<
③=,=,因为>,所以>
【点睛】本题综合考查了分数加法、乘法、除法运算,同时还训练了异分母分数大小的比较,具有一定的计算量及一定的解题技巧。
16.A
【解析】略
17.15
【分析】前6天看完了总页数的,用80乘求出前6天看完的页数,再用看完的页数除以6,计算出每天可以看的页数;最后用总页数80除以每天看的页数,所得结果即为看完全部需要的天数。
【详解】
(天)
因此全部看完共需要15天。
18.
【分析】4次运走这堆货物的,用除以4,即可求出平均每次运走这堆货物的几分之几,再用平均每次运走这堆货物的比例乘8,即可求出8次一共运走这堆货物的几分之几,据此解答。
【详解】÷4=×=
×8=
即4次运走这堆货物的,平均每次运走这堆货物的;8次一共运走这堆货物的。
19.√
【分析】互为倒数的两个数的乘积是1,则这两个数互为倒数关系,据此判断即可。
【详解】由分析可知:
如果数a和数b互为倒数,说明a和b互为倒数关系,是相互依存的。故原题干说法正确。
【点睛】本题考查倒数的定义,明确倒数的定义是解题的关键。
20.√
【分析】乘积是1的两个数互为倒数。真分数的分子比分母小,真分数小于1;它的倒数的分子就比分母大,真分数的倒数大于1。所以倒数就大于本身了。假分数两种情况:①这个假分数的分子和分母相等,假分数等于1,这个假分数的倒数也等于1,所以倒数等于本身;②这个假分数的分子大于分母,假分数大于1,这个假分数的倒数就小于1,倒数小于本身。
【详解】所以(a,b均不为0)的倒数比它本身大,一定是个真分数。题干说法正确。
故答案为:√
【点睛】明确真分数的意义,通过实例也可以分辨。像,,等真分数的倒数比本身大,,假分数的倒数等于它本身,或者小于它本身。
21.×
【解析】略
22.×
【分析】如果两个数的乘积为1,我们就说这两个数互为倒数,或者说一个数是另一个数的倒数,据此解答。
【详解】分析可知,乘积为1的两个数互为倒数,如:×2=1,和2互为倒数,所以题目说法不正确。
故答案为:×
【点睛】本题主要考查倒数的认识,掌握倒数的意义是解答题目的关键。
23.×
【分析】通常和谁比较就把谁看作单位“1”,题干中甲数和乙数相比较,所以乙数是“1”。
【详解】甲数比乙数多,是把乙数看作单位“1”,甲数是乙数的(1+)。
故答案为:×
【点睛】掌握找“1”的方法是解答题目的关键。
24.×
【详解】试题分析:根据分数除法的计算法则,甲数除以乙数(0除外),等于甲数乘乙数的倒数。据此判断。
解答:解:因为除数不能为0,所以甲数除以乙数,等于甲数乘乙数的倒数.这种说法是错误的。
故答案为:×
点评:此题考查的目的是理解掌握分数除法的计算法则,关键是明确:除数不能为0。
25.√
【分析】由于甲数除以乙数的商是,则甲数=乙数×,假设乙数是1,则甲数:1×=,乙数比甲数少几分之几,用乙数比甲数少的量除以甲数即可,即(-1)÷算出结果即可。
【详解】假设乙数是1,则甲数:1×=
(-1)÷
=÷
=
故答案为:√。
【点睛】本题主要考查一个数比另一个数少几分之几,用少的量÷另一个数即可。
26.√
【分析】把女生的人数看作单位“1”,则男生的人数是女生的1-;先求出女生比男生多多少,再除以男生的人数即可。
【详解】设女生的人数为1
[1-(1-)] ÷(1-)
=[1-]÷
=÷
=
则男生比女生少,女生比男生多。原题干说法正确。
故答案为:√
【点睛】本题考查求比一个数多几分之几的数是多少,明确单位“1”是解题的关键。
27.;0.9;2;
0.6;;0;
【详解】略
28.25.6;;
;
【分析】(1)按照从左到右的运算顺序进行计算即可;
(2)化除法为乘法,然后运用乘法分配律进行计算即可;
(3)先算小括号里面的减法,再按照从左到右的运算顺序进行计算即可;
(4)先去掉小括号,再运用加法交换律算中括号里面的加减法,最后算括号外面的乘法即可。
【详解】6.4×3.5÷
=22.4×
=25.6
=
=
=
=
=
=
=
=
=
=
=
=
=
29.(1)x=;(2)x=;(3)x=
【分析】(1)根据等式的性质,方程左右两边同时减去即可;
(2)先化简方程,再根据等式的性质,方程左右两边同时除以即可;
(3)根据等式的性质,方程左右两边先同时减去,再同时除以。
【详解】(1)
解:+x-=
x=
(2)
解:x=
x÷=
x=
x=
(3)
解:x+=
x=
x÷
x=×4
x=
30.72只
【分析】把收集到蜻蜓标本的个数看作单位“1”,根据“已知一个数的几分之几是多少,求这个数,用除法。”,用收集到蝴蝶标本的个数÷=收集到蜻蜓标本的个数,求出收集到蜻蜓标本的个数,然后再把收集到甲壳虫标本的个数看作单位 “1”,用收集到蜻蜓标本的个数÷=收集到甲壳虫标本的个数,即可求出甲壳虫标本有多少只。
【详解】由分析可得:
=
=
=(只)
答:甲壳虫有72只。
【点睛】本题考查分数除法的实际应用,关键是找准单位“1”。
31.
关系式:“复兴号”的速度÷(1+)=“和谐号”的速度
350÷(1+)
=350÷
=300(千米)
答:“和谐号”动车每小时运行300千米。
【详解】略
32.解:可以先算,再分.
一共有 壶油,平均每人分 壶油,21÷3=7个壶.
分法如下:
【详解】解:a.写出两面旗长和宽的比.
小旗长和宽的比为15∶10;
大旗长和宽的比为180∶120.
b.观察两个比.
15和10不是互质数,180和120也不是互质数,这两个比都不是最简单的整数比.
【分析】(1)化简后的比必须为互质数的比,否则比的化简没有完成.(2)最简单的整数比是比的一部分.(3)在以后求两个数或几个数的比时,都要求出最简单的整数比.
33.3元
【分析】把原来的观众看做单位“1” 即现在的观众是原来的(1+ ),收入增加了五分之一,是把原来的收入看做单位“1”,即现在的收入是原来的(1+ ),也就是求出一张门票的价格是原来的几分之几,进而求出现在的票价,最够根据降价的钱数=原价-现价;即可解答。
【详解】15-15×[(1+)÷(1+)]
=15-15×(1.2÷1.5)
=15-15×0.8
=15-12
=3(元) ;
答:一张门票降价了3元。
【点睛】根据观众增加的分率以及收入正价的分率,求出现价是原价的几分之几是完成本题的关键。
34.270千克
【分析】从题中可看出,面粉的重量始终没有变化,如果把买回的面粉的重量看作单位“1”。原来面粉的重量是大米的,那么,买回大米的重量就是面粉的,又知道大米用去54千克后,余下大米的重量就是面粉的,比较可得54千克是面粉重量的,根据分数除法的意义,用即可求出面粉的重量,再根据分数乘法的意义,用面粉的重量乘即可求出大米的重量,然后加上面粉的重量,即可求出总重量。
【详解】
=
=
=(千克)
(千克)
(千克)
答:食堂买回大米和面粉共270千克。
【点睛】本题主要考查了分数乘除法的应用,找到54千克对应的分率是解答本题的关键。
35.300千米
【分析】把两地的距离看作单位“1”,根据路程=速度×时间,代入数据,求出乙车行驶2.5小时的路程,乙车2.5小时行驶的路程等于甲车行完全程的,也就是乙车行驶了全程的,对应的2.5小时行驶的路程,求单位“1”,用乙车2.5小时行驶的路程÷,即可解答。
【详解】50×2.5÷
=125÷
=125×
=300(千米)
答:两地相距300千米。
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)