中小学教育资源及组卷应用平台
第1单元负数的初步认识同步培优卷-数学五年级上册苏教版
一、选择题
1.2021年1月2日无锡市的气温是8摄氏度~﹣2摄氏度,这一天的温差是( )。
A.6摄氏度 B.10摄氏度 C.﹣10摄氏度 D.﹣6摄氏度
2.明明和莉莉各买了一瓶同一种饮料,净含量都是(300±8)毫升。她们所买的果汁最多相差( )毫升。
A.0 B.8 C.16 D.24
3.第一小学冬锻节开始了,在女子一分钟跳绳小组赛中,如果琳琳跳了127下,记作﹢7下,那么菲菲跳了118下,应该记作( )下。
A.﹢8 B.﹣2 C.﹣18 D.﹢2
4.五(1)班进行一次仰卧起坐体能测验,老师以30个为标准,超出的部分记为正,不足的部分记为负。第一小组6名同学的成绩分别为﹣5、﹢10、0、﹣2、﹢6、﹢3,第一小组6名同学的平均成绩是( )个。
A.32 B.31 C.28 D.33
5.下面各数中,最接近0的数是( )。
A.﹢3 B.﹣2 C.4 D.﹣1
6.下面的说法中,错误的是( )。
A.零上7℃可以写成﹢7℃,也可以写成7℃ B.0既不是正数,也不是负数
C.比正数小的数一定是负数 D.股市上涨100点可以记作﹢100点
二、填空题
7.在﹣6、0、﹢5、﹣5、﹢20、8、﹣12这些数中,正数有( ),负数有( ),( )既不是正数也不是负数。
8.某大型水库五月份因降雨较多,水位上升6厘米,记作﹢6厘米;八月份因降雨较少,水位下降3厘米,记作( )厘米。
9.一只蜗牛向东爬了20厘米记作﹢20厘米,那么﹣10厘米表示蜗牛向( )爬了 ( )厘米。
10.今天的最高气温是2℃,最低气温是零下5℃,这一天最高温与最低温相差( )℃。
11.小刚家在图书馆的南边400米处,记作﹢400米,他从图书馆往北走3分钟,每分钟走120米,他所在的位置可以用( )米表示。
12.一瓶饮料的外包装上标有“净含量500克±5克”。这瓶饮料最多不多于( )克,最少不少于( )克。
三、判断题
13.表示实际生活中的量时,正、负表示的意义是不固定的。( )
14.+5℃和5℃所表示的气温不一样高。( )
15.某市2013年冬天某地气温是﹣2到5,这天的温差是6。( )。
16.如果上车9人记作+9人,那么-8人表示下车8人. ( )
17.3和-4相比,3更接近0. ( )
四、解答题
18.冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度是多少?
19.A地的海拔是-20米,B地的海拔是15米,C地的海拔是-35米,D地的海拔是50米.
(1)B地与D地比较,( )地海拔更高一些,高出( )米.
(2)A地与B地比较,( )地海拔更高一些,高出( )米.
(3)A地与C地比较,( )地海拔更高一些,高出( )米.
(4)把以上四个地区的海拔高度按从高到低的顺序排列.
20.南京实验高中篮球队选拔队员,规定男队员的标准身高是172cm,高于标准身高记为正,低于标准身高记为负。现有5名参选队员,身高记录如下表:
选手 1号 2号 3号 4号 5号
身高/cm -4 -2 +5 +3 +8
(1)若实际选拔队员的标准身高为175~180cm,则有几名参选队员可入选?分别是哪几位选手?
(2)若将标准放宽为170~180cm,则有几名参赛队员可入选?分别是哪几位选手?
21.下图中每格表示1米,蚂蚁开始的位置在“0”处.
(1)蚂蚁从0点向东行1米,记作+1米,那么它从0点向西行4米,可以记作( )米.
(2)如果蚂蚁的位置是-6米,说明它从0点向哪个方向行了多少米
(3)这只蚂蚁先行了+2米,又行了-5米,在图中用“△”标出它现在的位置.
22.1990年~1995年下列国家年平均森林面积(单位:平方千米)的变化情况是:
中国减少866, 印度增长72, 韩国减少130,
新西兰增长434, 泰国减少3294, 孟加拉国减少88.
如果规定将“增加”记为正,请用正数和负数表示这六个国家1990年~1995年年平均森林面积的增长量.
参考答案:
题号 1 2 3 4 5 6
答案 B C B A D C
1.B
【分析】因为在数轴上,-2和8之间间隔了10格,据此可以求得一天的温差。
【详解】
﹣2摄氏度和0摄氏度间隔了2格,8摄氏度和0摄氏度间隔了8格,因此﹣2摄氏度和8摄氏度间隔了10格,一天的温差为10摄氏度。
故答案为:B
【点睛】找出题目中的数量关系,是解答此题的关键。
2.C
【分析】净含量都是(300±8)毫升,表示果汁的净含量最多比300毫升多8毫升,最少比300毫升少8毫升,则她们所买的果汁最多相差(8+8)毫升。
【详解】8+8=16(毫升),她们所买的果汁最多相差16毫升。
故答案为:C
【点睛】本题考查正、负数的实际应用。理解“净含量都是(300±8)毫升”的意义是解题的关键。
3.B
【分析】根据题意,已知琳琳跳了127下,记作﹢7下,说明琳琳跳的比基准数多7下,则基准数是127-7=120下,那么菲菲跳了118下,比基准数少了120-118=2下,记作﹣2下;据此解答。
【详解】由分析得:
127-7=120(下)
120-118=2(下)
那么菲菲跳了118下,应该记作﹣2下。
故答案为:B
【点睛】本题主要考查正负数的意义与应用,应熟练掌握。
4.A
【分析】由题可知,仰卧起坐体能测验以30个为标准,超出的部分记为正,不足的部分记为负。第一小组6名同学有4名同学达标,超出标准的总数是10+0+6+3=19个,2名同学未达标,差5+2=7个,所以6名同学一共超出标准19-7=12个,根据平均数=总数÷个数,用12除以6先求出6人平均超出标准几个,再加上标准数,就是6名同学的平均成绩。
【详解】由分析得:
(10+0+6+3-5-2)÷6+30
=(19-5-2)÷6+30
=12÷6+30
=2+30
=32(个)
第一小组6名同学的平均成绩是32个。
故答案为:A
【点睛】本题考查正负数的意义及应用,明确平均数的求法是解答本题的关键。
5.D
【分析】不管正负号,数值最小的数最接近0,据此分析。
【详解】1<2<3<4,最接近0的数是﹣1。
故答案为:D
【点睛】比0大的数叫正数,比0小的数叫负数。
6.C
【分析】根据正、负数的意义,数的前面加有“﹢”号的数,就是正数;数的前面加有“﹣”号的数就是负数;0既不是正数也不是负数;据此判断即可。
【详解】由分析得:
A.零上7℃可以写成﹢7℃,也可以写成7℃,说法正确;
B.0既不是正数,也不是负数,说法正确;
C.比正数小的数也有可能是0,0既不是正数也不是负数,所以原题说法错误;
D.股市上涨100点可以记作﹢100点,说法正确。
故答案为:C
【点睛】此题主要考查正、负数的意义,要熟练掌握。
7. ﹢5、﹢20、8 ﹣6、﹣5、﹣12 0
【分析】根据正、负数的意义,数的前面加有“﹢”号的数,就是正数,正数前面的“﹢”可以省略;数的前面加有“﹣”号的数,就是负数,0既不是正数也不是负数,据此解答。
【详解】﹣6、0、﹢5、﹣5、﹢20、8、﹣12中:
正数有:﹢5、﹢20、8;
负数有:﹣6、﹣5、﹣12;
0既不是正数也不是负数。
在﹣6、0、﹢5、﹣5、﹢20、8、﹣12这些数中,正数有﹢5、﹢20、8,负数﹣6、﹣5、﹣12,0既不是正数也不是负数。
8.﹣3
【分析】正数、负数表示两种相反意义的量。如果规定水位上升记作正,那么水位下降就记作负,据此解答。
【详解】某大型水库五月份因降雨较多,水位上升6厘米,记作﹢6厘米;
八月份因降雨较少,水位下降3厘米,记作﹣3厘米。
9. 西 10
【分析】正负数可以表示相反意义的量,如果向东爬记为正,那么向西爬则记为负,据此填空。
【详解】一只蜗牛向东爬了20厘米记作﹢20厘米,那么﹣10厘米表示蜗牛向西爬了10厘米。
10.7
【分析】解决有关正、负数的计算问题时,可以用画图法,以0为分界点,分成两段来计算。今天的最高气温是2℃,即零上2℃,最低气温是零下5℃(﹣5℃)。如下图所示:
通过观察发现:这一天最高温与最低温的温差是最高气温与0℃的温差加上0℃与最低气温的温差。
【详解】2+5=7(℃)
所以,这一天最高温与最低温相差7℃。
11.﹣360
【分析】正数、负数表示两种相反意义的量。如果规定在图书馆的南边记作正,那么从图书馆向北走就记作负。
已知小刚从图书馆往北走3分钟,每分钟走120米,根据“路程=速度×时间”,即可求出他走的路程。
【详解】120×3=360(米)
小刚从图书馆往北走3分钟,每分钟走120米,他所在的位置可以用﹣360米表示。
12. 505 495
【分析】包装上的标注表示,饮料的净含量最多的情况比500克多5克,最少的情况是比500克少5克,净含量在最少与最多这个区间内都是可能的,据此解答。
【详解】最多500+5=505(克)
最少500-5=495(克)
所以,这瓶饮料最多不多于505克,最少不少于495克。
【点睛】本题考查用正负数表示具有相反意义的量,如升高与降低,盈利与亏损,存入与取出等等。
13.√
【分析】根据正负数是两种具有相反意义的量,是相对的,不同的标准,反映的意义不一样,可知正、负表示的意义是不固定的。
【详解】因为正负数是两种具有相反意义的量,是相对的,所以表示实际生活中的量时,正、负表示的意义是不固定的说法正确。
故答案为:√
【点睛】考查了正负数的意义,虽然简单,但是易错题,要多注意。
14.√
【解析】略
15.×
【分析】用最高气温减去最低气温,就是这天的温差,正数减去负数直接让正数加上负数去掉负号的数字即可。
【详解】5+2=7(℃),所以这天的温差是7℃。
故答案为:×
【点睛】此题主要考查正负数相加减的问题,我们也可以借助于数轴找出两个数之间的距离,就是两数之差。
16.√
【解析】略
17.√
【解析】略
18.-5℃
【详解】10-5×3=-5℃
答:3小时后冰箱内部的温度是-5℃.
19.(1)D 35 (2)B 35 (3)A 15 (4)50米>15米>-20米>-35米
【详解】略
20.(1)3名 3号、4号、5号;(2)4名 2号、3号、4号、5号
【分析】(1)因为把男队员的标准身高172厘米记为0,即以标准身高为标准,超出的记为正,不足的记为负,用标准身高172厘米加上表中每个队员的身高情况,分别求出每个队员的身高,观察在175~180cm间的人数,即可解决问题。
(2)同理,由(1)可知每个队员的身高,观察在170~180cm间的人数,即可解决问题。
【详解】(1)1号:172-3=169(厘米)<175厘米
2号:172-2=170(厘米)<175厘米
3号:172+5=177(厘米)
4号:172+3=175(厘米)
5号:172+8=180(厘米)
所以,由3名参选队员入选,分别是3号、4号、5号。
(2)1)1号:172-3=169(厘米)<170厘米
2号:172-2=170(厘米)
3号:172+5=177(厘米)
4号:172+3=175(厘米)
5号:172+8=180(厘米)
所以,由4名参选队员入选,分别是2号、3号、4号、5号。
【点睛】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题。
21.(1)-4 (2)向西行6米 (3)(提示:标在图中-3位置上)
【详解】略
22.-866;+72;-130;+434;-3294;-88
【详解】解:根据正负数的意义可知:减少866记作-866;增长72记作+72;减少130记作-130;增长434记作+434;减少3294记作-3294;减少88记作-88.
故答案为-866;+72;-130;+434;-3294;-88
正负数表示一组相反意义的量,此题中减少的部分就记作-,增长的部分就记作正,由此根据正负数的知识写出这些数即可.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)